Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Get Moving—Walking Enlarges Hippocampus, Preserves Memory in Seniors
4 February 2011. Listen up, seniors. In a randomized trial of 120 of your sedentary peers, 40 minutes of walking, three times a week for a year, brought measurable benefit in the form of bigger brains and improved spatial memory. “To get such dramatic results from a few hours a week was somewhat surprising,” said senior investigator Arthur Kramer of the University of Illinois, Champaign-Urbana, in an interview with ARF. He and colleagues reported the findings online January 31 in the Proceedings of the National Academy of Sciences USA.

Plenty of research suggests that physical activity is good for the mind. Prior studies of older adults correlated regular exercise with reduced dementia risk (Larson et al., 2006). Investigations by first author Kirk Erickson, University of Pittsburgh, Pennsylvania, linked aerobic fitness to bigger hippocampi (Erickson et al., 2009) and showed, longitudinally, that walking prevents gray matter loss (Erickson et al., 2010 and ARF related news story).

Randomized trials on the benefits of physical activity are rare, though, as it is hard to get people to stick to a specific exercise regimen (McCurry et al., 2010). One such study on seniors with subjective memory complaints did have promising findings—six months of moderate exercise led to modest improvements on the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog), measured at 18 months (Lautenschlager et al., 2008 and ARF related news story). The current study, another randomized trial of dementia-free seniors, offers “much more concrete proof” for the idea that exercise helps the brain, said Eric Larson of Group Health Research Institute in Seattle, Washington. “It looked at a biologic endpoint—the size of the part of the brain most important for memory, and one of the parts most affected by dementia”—i.e., the hippocampus.

Collaborating with researchers at Ohio State University in Columbus and Rice University in Houston, Texas, Kramer and Erickson analyzed 120 older adults (average age: 66.5 years) randomized to one year of moderate-intensity walking, or stretching and toning exercises as a control, three times a week. The groups began the study with comparable hippocampal volumes, assessed by magnetic resonance imaging (MRI), and had similar attendance rates. Participants had brain scans, as well as fitness and memory assessments, at baseline, six months, and after the 12-month intervention.

Consistent with the expected 1 to 2 percent annual hippocampal loss in dementia-free seniors (Raz et al., 2005), the control group lost about 1.4 percent volume in this brain region by the end of the 12-month trial. In contrast, the hippocampi of the walkers grew roughly 2 percent. The benefit seemed specific to the anterior part of this brain structure, which mediates acquisition of spatial memory. Similar effects did not appear in the thalamus, caudate nucleus, or posterior hippocampus.

By measuring changes in the participants’ maximal oxygen consumption, the researchers determined that the intervention succeeded in raising aerobic fitness levels, and that larger fitness boosts correlated with greater hippocampal growth. Furthermore, the team found that, within the control group, people with higher baseline fitness levels had less hippocampal shrinkage than those who were less fit, suggesting that fitness protects against loss of brain tissue.

How fitness and hippocampal size correlated with cognition was somewhat nuanced. By the end of the study, the exercise and stretching control groups both showed slight improvement in accuracy and reaction times on a spatial memory task. However, those with better aerobic fitness at baseline and 12 months had better memory performance, as did participants who started or ended the study with larger hippocampi.

To explore possible mechanisms underlying these changes, the authors looked at serum levels of brain-derived neurotrophic factor (BDNF) in blood collected from participants at baseline and 12 months. People who exercise more have higher levels of hippocampal BDNF (Cotman and Berchtold, 2002; Neeper et al., 1995), and increased serum BDNF levels have been correlated with larger hippocampi and better memory performance (Erickson et al., 2010 and ARF related news story). In the present study, greater elevations in serum BDNF were linked to greater gains in hippocampal volume.

All told, the study “attempted to tie together changes in anatomy with changes in blood chemistry with changes in cognition, in a brain region with a pretty well-defined function (episodic memory),” Kramer said.

Among the lifestyle factors proposed to affect cognitive impairment and AD, “the evidence is most persuasive for physical exercise,” commented Ron Petersen of the Mayo Clinic in Rochester, Minnesota, in an e-mail to ARF. “This study supports that contention and lends some anatomical, biomarker support for this position.” In response to the recent declaration by a National Institutes of Health (NIH) expert panel that there is no strong evidence that anything helps prevent AD, some scientists stressed that people should make lifestyle choices that include physical exercise (see ARF related news story).

Of note, participants in the present study had fairly poor cardiovascular fitness and were asked, in the exercise group, to “walk to 60 percent of their maximal heart rate,” Larson said. “This is stuff anybody could do. You’re not getting winded by this level of exercise.”—Esther Landhuis.

Reference:
Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF. Exercise training increases size of hippocampus and improves memory. 2011 Jan 31. PNAS Early Edition. Abstract

 
Comments on News and Primary Papers
  Primary Papers: Exercise training increases size of hippocampus and improves memory.

Comment by:  Scott Small
Submitted 8 February 2011  |  Permalink Posted 8 February 2011

This work very much concords with our PNAS paper, which found that exercise causes a selective increase in dentate gyrus CBV (Pereira et al., 2007).

One thing to note is that they find that the increase in hippocampal volume correlates with exercise-induced increases in serological BDNF. Interestingly, previous studies have documented that within the hippocampus, exercise causes a selective upregulation of BDNF expression in the dentate gyrus and CA3. Thus, although Erickson et al. did not assess individual hippocampal subregions, it is plausible to assume that the effect they are seeing is really driven by exercise-induced changes in the dentate gyrus. Indeed, in the discussion section, the authors suggest this as the driving mechanism.

We and others have found that the dentate gyrus is differentially affected by "normal aging" and relatively preserved in AD. This is one reason I think that exercise will be most beneficial for cognitive aging and less so for AD (which more prominently targets other hippocampal subregions).

View all comments by Scott Small


  Primary Papers: Exercise training increases size of hippocampus and improves memory.

Comment by:  Sangaji Ramadhan
Submitted 3 July 2012  |  Permalink Posted 11 July 2012
  I recommend this paper
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad