Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Long-elusive Function for APP Cleavage Product Comes into View: It's Gene Transcription
12 July 2001. It has become part of the standard lore on Alzheimer's that a series of enzymes-dubbed α-, β-, and γ-secretase-successively chops away at the APP cell-surface protein, and that one product of γ-secretase is the infamous Aβ-peptide. Yet why does this orderly degradation of APP occur? The mystery only deepened last year, when combined knockouts of APP and its homologues proved lethal, suggesting the precursor protein must be doing something important (Heber, et al.). Just what that something could be is the subject of a July 6 paper in Science by Xinwei Cao and Thomas Sudhof of the Howard Hughes Medical Institute at the University of Texas Southwestern Medical Center in Dallas. The authors show that the less-studied product of γ-secretase cleavage-an intracellular fragment comprising the inner half of APP's transmembrane region plus its cytoplasmic tail-likely is involved in transcriptional activation.

"Our study provides a physiological reason for the processing of APP. That has implications for AD, because once you know why it is cut you can also look at why it is sometimes cut more and sometimes less," said Sudhof. Gene transcription is tightly regulated by extracellular signals, yet in sporadic AD there are no mutations that change any of the known APP processing components. Possibly, sporadic AD develops because the pathway that produces Aβ is dysregulated for many years, Sudhof argues.

The study also has implications for therapeutic attempts to block APP processing. "For example, γ-secretase inhibition clearly is going to have effects not only on Aβ production but also on nuclear signaling. That could be good or bad," says Sudhof.

In their search for a function for APP processing, the researchers pursued a trail laid down by notch, another cell-surface receptor that is a substrate for γ-secretase. Following cleavage, its cytoplasmic tail moves to the nucleus and regulates transcription there (Schroeter, et al., and Struhl, et al.).

Cao created fusion proteins of APP with the DNA-binding domains of a yeast and a bacterial transcription factor. These chimeric proteins allowed Cao to measure if the APP cytoplasmic tail activates transcription of reporter genes in transfected cell lines. The scientists found that the APP fusion protein stimulated transcription only weakly on its own, but transcription jumped more than 2,000-fold when the tail was bound to the multi-domain adaptor protein Fe65. Fe65 is not specific to APP, but may have a role in AD, much like Ras has many physiological binding partners but plays a specific role in cancer, Sudhof says.

Moreover, Cao and Sudhof report that the APP cytoplasmic tail and Fe65 form a stable trimeric complex with Tip60, a histone acetyltransferase. (These enzymes control access of transcriptional enzymes to genes by modifying the packing density of the histone proteins wrapped around the DNA). Tip60 itself is part of a nuclear protein complex that acts as a general transcription factor.

Cao and Sudhof also report that all of Fe65's major domains are required for transcriptional activation and that any mutation disrupting Fe65 binding to the APP fragment or to Tip60 abolishes this function. Taken together, the authors suggest that the complex of APP's cytoplasmic tail with Fe65 and Tip60 directly acts in transcription. They add that this similarity between APP and Notch supports the idea that presenilin-dependent proteolysis functions as a general biological mechanism of transcriptional regulation (Brown, et al.).

Although the in vitro experiments in the present study need to be repeated with endogenous proteins, the work raises two important questions: Which proteins regulate APP proteolysis, and which genes does the cytoplasmic APP tail turn on or off? Stay tuned.-Gabrielle Strobel.


Reference:Cao X, Sudhof TC. A transcriptively active complex of app with fe65 and histone acetyltransferase tip60. Science 2001 Jul 6;293(5527):115-20. Abstract

 
Comments on News and Primary Papers
  Primary Papers: A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60.

Comment by:  Romulo Meira
Submitted 14 September 2002  |  Permalink Posted 14 September 2002
  I recommend this paper

  Primary Papers: A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60.

Comment by:  Yungfeng Liao
Submitted 17 June 2004  |  Permalink Posted 17 June 2004
  I recommend this paper

  Primary Papers: A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60.

Comment by:  Dominic Walsh, ARF Advisor
Submitted 28 June 2004  |  Permalink Posted 28 June 2004

A landmark paper demonstrating that APP intracellular domain is involved in transcriptional regulation.

View all comments by Dominic Walsh

  Primary Papers: A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60.

Comment by:  shen chengyong
Submitted 31 August 2004  |  Permalink Posted 1 September 2004
  I recommend this paper

AICD is produced after the γ-secretase proteolysis process. It is similar to NICD as a transcript factor. This paper provides us with the information that APP may function by releasing AICD. Although the target gene of AICD is still unclear, it has been attracting much attention.

View all comments by shen chengyong
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad