Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Off BACE: Lack of Secretase Causes Seizures in Knockout Mice
5 July 2010. A potential therapeutic strategy for Alzheimer disease (AD) is to inhibit the β-secretase (BACE) enzymes that kickstart processing of amyloid precursor protein (APP) to form Aβ. BACE inhibitors are currently the subject of intense drug development—including analysis of possible serious side effects. In a paper published June 30 in The Journal of Neuroscience, researchers led by Riqiang Yan at the Lerner Research Institute in Cleveland, Ohio, report that BACE1-knockout mice produce more sodium channels in axons, have increased neuronal excitability, and are more susceptible to seizures than are normal mice. The paper is a cautionary note for drug developers, although further evidence will be needed before scientists can determine if these BACE1 effects will be a problem for human trials.

BACE1-null mice have been particularly valuable in determining the normal functions of the enzyme; for example, these mice show hypomyelination of central and peripheral nerves, which has been traced to BACE1’s action on neuregulin-1 (see ARF related news story on Meyer-Luehmann et al., 2006 and Willem et al., 2006). BACE1 also cleaves the β subunits of sodium channel proteins (see Wong et al., 2005).

While characterizing BACE1 knockouts, first authors Xiangyou Hu and Xiangdong Zhou observed that many of the animals experienced epileptic seizures. The same behavior was also seen by another group looking at a separate line of BACE1-negative mice (see Kobayashi et al., 2008), implying it was not just an artifact of this particular line. Yan and colleagues noted that about 11 percent of young BACE1-null mice had seizures, with incidence increasing with age to about 22 percent of elderly mice. To investigate this phenomenon, the authors implanted eight knockout mice and eight wild-type mice with devices that permitted electroencephalogram (EEG) monitoring of brain activity and electromyogram (EMG) monitoring of muscle contractions. They found that all of the knockout mice showed increased electrical discharges in their brains compared to wild-type mice, although only one of the knockouts experienced a visible seizure during the monitoring period. These electrical discharges are referred to as “silent seizures” because there are no behavioral indications. The EEG results revealed that even BACE1-null mice without visible seizures have a pattern of abnormal electrical activity and hyperexcitability in the brain.

Sodium channels are closely involved in neuron excitability, as their opening depolarizes neurons, bringing them to the threshold where an action potential will fire. And since these channels are linked to seizures (see Catterall, 2002; Stafstrom, 2007) and are BACE1 substrates, the authors chose to examine their expression in the brains of wild-type and BACE1-null mice. They stained brain sections with antibodies to the two β and one α subunit that make up the sodium channel, and found a greater abundance of subunits on the surface of hippocampal mossy fibers of the knockouts, consistent with axonal expression of the channels.

To verify these immunostaining results, the authors directly measured the activity of sodium channels in young BACE1-knockout mice by isolating hippocampal neurons and using whole-cell patch-clamping methods. Cells from the knockout mice were more easily depolarized than wild-type neurons, and showed higher current density, implying more sodium channels were available. Hippocampal slices from knockout animals had enhanced neuronal excitability and more robust synchronous neuronal firing.

Their results demonstrate another physiological role for BACE1, Yan said, adding to the evidence that “BACE1 is important not only for generating Aβ peptide, but also for other brain functions.”

It’s not yet clear whether this finding will affect therapeutic development of BACE1 inhibitors. The knockout mouse is not the best model of a human patient taking a BACE1 inhibitor, noted Adam Simon, president of the science consulting firm AJ Simon Enterprises in Yardley, Pennsylvania, who worked on BACE1 inhibitor development at Merck for several years. Most pharmacological inhibitors reduce levels of their target protein by only 30 to 70 percent, not 100 percent as in the knockout mouse. A better genetic model, Simon said, would be the heterozygous BACE1 knockout, which would have about 50 percent gene dosage.

Yan said his group plans to examine the BACE1 heterozygote to see if these mice also show silent seizures. They also want to cross BACE1 heterozygotes with AD model mice, Yan said, a model that would even more closely mimic an AD patient receiving a BACE1 inhibitor. Complicating the issue is the fact that AD mice, as well as human AD patients, have an increased incidence of epileptic seizures, which may be due to high Aβ levels (see ARF related news story on Palop et al., 2007). Lowering BACE1 levels in AD mice might reduce these seizures by reducing Aβ, Yan said, or conversely lowering BACE1 might increase seizures by increasing the surface expression of sodium channels; there’s no way to know until they do the experiment.

Another complication is that BACE1 expression is extremely high during development, Simon pointed out, which means that some problems in the knockout mouse could be due to lack of the enzyme during developmental stages, not due to adult loss of BACE1 function. Since AD patients have had normal levels of BACE1 all their lives, a conditional knockout of BACE1 would be the best model for drug development, Simon said. Without a conditional knockout model to test, he said, scientists can’t rule out a developmental explanation for the observed brain changes in BACE1 knockouts.

Drug discoverers should be mindful of the possible effect of BACE1 inhibitors on sodium channel activity, Simon suggested, and might want to look for sodium channel changes and examine EEGs in their preclinical animal models. But this finding does not ring any alarm bells for the therapeutic viability of BACE1 inhibitors, Simon said. “Many more controls need to be done to tease apart whether [this finding] is relevant to pharmacological inhibition of BACE1 in the elderly.”—Madolyn Bowman Rogers.

Reference:
Hu X, Zhou X, He W, Yang J, Xiong W, Wong P, Wilson CG, Yan R. BACE1 Deficiency Causes Altered Neuronal Activity and Neurodegeneration. The Journal of Neuroscience. 2010 June 30;30(26):8819-29. Abstract

 
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad