Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Stem Cells Move In, Set Up Shop in Brain
22 January 2010. For stem cell therapies to work, it is not enough for a new neuron to settle down in the brain—it must also integrate with the neural network, sending out axons and dendrites to the right places. In the January 20 issue of the Journal of Neuroscience, researchers from Stanford Medical School in Palo Alto, California, report success in getting neurons from embryonic stem cells to connect with the right host neurons in neonatal mice. The researchers, led by first author Makoto Ideguchi (since moved to Yamaguchi University School of Medicine in Japan) and principal investigator James Weimann, nudged stem cells toward cortical neuron biology before implanting them, and the environment in which the cells landed did the rest.

Other researchers have shown that embryonic stem cell-derived motor neurons can form neuromuscular junctions in adult mice (see ARF related news story and Yohn et al., 2008). In the current work, Weimann and colleagues focused on the layer 5 and 6 cortical neurons, which connect the brain to spinal cord to control muscle function. These neurons are lost in amyotrophic lateral sclerosis (Boillée et al., 2006) and spinal cord injury (Hains et al., 2003).

The transplanted cortical neuron progenitors completed differentiation and formed dendrites with spines, a hallmark of cortical neurons. They sent out hundreds of axons, too many to count, and many reached the spinal cord, the authors report. Just as importantly, transplanted cells did not send axons to inappropriate places. “Observing proper axon projection is quite an important aspect of stem cell transplantation, in order to avoid side effects from aberrant connections,” noted Allison Ebert of the University of Wisconsin in Madison, who was not involved with the study, in an e-mail to ARF.

The trick was to find a sweet spot in the differentiation process. “If they are too differentiated, they are not going to be able to interpret the information when they land,” Weimann said. “If they are not differentiated enough, they are going to form tumors.” The researchers co-cultured the stem cells with MS5 mouse stromal cells (Barberi et al., 2003), which pushed them toward a neural pathway.

“Not any generic neuron can do this,” Weimann noted. The researchers treated a separate set of stem cells with retinoic acid to cause neural differentiation (Bibel et al., 2004). Although the procedure produced “beautiful” neurons, Weimann said, they were not right for the cortex. Upon transplantation, they failed to develop dendritic spines, and sent their axons all over the place, seldom connecting to appropriate subcortical targets.

The work represents an important, but early step toward stem cell therapy. In this study the researchers used one- to three-day-old mice; in older animals, they were not able to achieve full integration of the transplanted cells. “I think there are a lot of inhibitory signals in the adult brain that keep neurons from sending out axons willy-nilly,” Weimann said. However, other researchers have shown that embryonic grafts can extend axons as far as the spinal cord in adult mice (Gaillard et al., 2007), so it seems plausible that stem cells might be able to do so, too. “The mature phenotypes and dendritic spines noted on the transplanted cells is encouraging,” Ebert wrote. “The next step would be to test functional integration.”

The other key message, Weimann said, is that just putting neurons in the brain is not enough. Therapeutic neurons must be primed to connect with the proper neighbors. For example, he suggested, in stem cell therapy for Parkinson disease, improperly connected dopaminergic neurons will produce dopamine in an unregulated manner. “You really have to understand what is happening in normal development, and try to recapitulate as much of that as possible before transplantation,” Weimann said.—Amber Dance.

Reference:
Ideguchi M, Palmer TD, Recht LD, Weimann JM. Murine embryonic stem cell-derived pyramidal neurons integrate into the cerebral cortex and appropriately project axons to subcortical targets. J. Neurosci. 2010;30(3):894-904. Abstract

 
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad