Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Research Brief: α-synuclein Spoils the Neural Neighborhood
10 August 2009. Aggregates of α-synuclein are the principal component of Lewy bodies, neuronal inclusions found in Parkinson and other neurodegenerative diseases—and they get around. Cells normally keep their α-synuclein problems to themselves, but when more accumulates than they can handle, they may release the protein into the extracellular space. Unfortunately, dumping trash in your neighbor’s yard is rarely a good idea. A report posted online in PNAS July 27 shows that the nearby cells can pick up α-synuclein jetsam, helping the toxic protein spread from cell to cell across the brain. The results may help explain why tissues transplanted into people with Parkinson’s eventually succumb to the disease (see ARF related news story; Kordower et al., 2008 and Li et al., 2008), and they beef up the idea that aggregation-prone proteins can be transmitted in the brain much like prions.

The work was a joint effort between the laboratories of Seung-Jae Lee of Konkuk University in Seoul, South Korea, and Eliezer Masliah of the University of California at San Diego. The joint first authors were Paula Desplats from the University of California and He-Jin Lee from Konkuk University. PD Online Research coverage carries commentary on the discovery and an interview with Lee.

The work parallels discoveries of aggregate migration in other neurodegenerative diseases. Aβ (see ARF related news story on Eisele et al., 2009), tau (see ARF related news story on Clavaguera et al., 2009; and ARF related news story on Frost et al., 2009), and polyglutamine peptides (Ren et al., 2009) all spread across the brain. Such transport may be a common theme, wrote Mathias Jucker of the University of Tübingen in Germany, in an e-mail to ARF: “I am sure there are more to come.” Jucker was not involved in the current study. “How relevant this is for the pathogenesis of the disease is still open,” he noted.

Lee and colleagues had already discovered that neurons can exocytose (Lee et al., 2005) and endocytose (Lee et al., 2008) α-synuclein. In the current work, they put the two together to show that toxic forms of the protein move from cell to cell, seeding new aggregates as they go. In co-cultures of donor neurons expressing human α-synuclein and acceptor stem cells lacking it, it took only a day for nearly half of the acceptors to exhibit α-synuclein accumulation. In human α-synuclein-expressing mice that received stem cell grafts, the transplanted cells also picked up the protein, similar to what may have happened to cell grafts in human clinical trials for PD (see ARF related news story). One month after the mice received transplants, 15 percent of grafted cells contained the human protein, and a few hosted Lewy-like inclusion bodies as well. Acceptor neurons exhibited symptoms of apoptosis, including fragmented nuclei and caspase 3 activation, that control cells not exposed to α-synuclein did not.

“This is an interesting and well-done study showing that pathogenic α-synuclein can be transferred from cell to cell both in vitro and in vivo,” wrote Lary Walker of Emory University in Atlanta, Georgia, in an e-mail to ARF. “It should come as no surprise that grafted cells in Parkinson’s patients succumb to synucleinopathy,” he added. “Transplantation of healthy cells into such a diseased brain is rather like trying to rebuild a burned house while the fire is still raging.” He noted that the experimental systems reported in the paper should be useful for analyzing the problem and looking for therapeutics to circumvent it.

Masliah is thinking along similar lines. “We want to develop cells or grafts that would be resistant to these toxic oligomers,” he said. Such graft cells might be oblivious to their neighbor’s garbage.—Amber Dance.

Reference:
Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A. 2009 Jul 27. Abstract

 
Comments on News and Primary Papers
  Comment by:  Bharathi Shrikanth Gadad
Submitted 10 August 2009  |  Permalink Posted 10 August 2009
  I recommend the Primary Papers

This paper seems to be interesting, revealing an absolute requirement for intracellular delivery of the fibrillated alpha-synuclein to induce Lewy-body like inclusions. The cell-to-cell communication requires intracellular seeding, which is, however, revealing a pattern similar to prion proteins. Hence the question arises whether alpha-synuclein acts like a prion.

View all comments by Bharathi Shrikanth Gadad

  Primary Papers: Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein.

Comment by:  Lawrence Rajendran
Submitted 20 August 2009  |  Permalink Posted 20 August 2009

It was a pleasure to read this work from the Masliah/Lee duo on the cell-to-cell transmission of α-synuclein (Desplats et al., 2009). This work shows that α-synuclein can be released from cells and is taken up by the neighboring cell, thereby aiding in a progressive spread of the protein. This work continues Seung-Jae Lee’s previous work showing that α-synuclein could be released (Lee et al., 2005) and taken up in neurons (Lee et al., 2008; Lee et al., 2008). While the exact mechanism of the release is currently not well defined, this group has done elegant cell biology work to study the internalization mechanism. They show that fluorescently labeled, recombinant α-synuclein is internalized from the extracellular lumen via a dynamin-1-dependent pathway in vitro. This also occurred in vivo, where injection of GFP-labeled mouse cortical neuronal stem cells into the hippocampus of α-synuclein-transgenic mice led to the efficient uptake of the host...  Read more
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad