Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Traveling Tau—A New Paradigm for Tau- and Other Proteinopathies?
15 June 2009. Wandering from cell to cell seeding aggregation and wreaking neurodegenerative havoc may not be the image that comes to mind when one thinks of the intracellular protein tau, but a study published in the June 7 Nature Cell Biology hints that that might be exactly what goes on in the Alzheimer brain. Researchers report that from a tiny injected seed, tau pathology eventually spreads to anatomically connected areas of the mouse brain. “It suggests that some form of assembled tau is taken up by cells and then promotes formation and release of new assemblies,” said Michel Goedert, MRC Laboratory of Molecular Biology, Cambridge, UK, one of the senior authors on the paper. “The idea has been out there for a while that normal neuronal transport mechanisms may be causing the spread of tau pathology,” suggested Lary Walker of Emory University, Atlanta, Georgia. Walker has studied protein seeding for some time, but was not involved in this study. “The early Braak studies showed that tau pathology progressed from one region of brain to another, starting in the trans-entorhinal cortex. That made sense, based on connectivity of the regions, but this is the first more or less direct evidence that this might be what’s happening,” Walker told ARF (see also comment below).

Goedert said the study, a collaboration with Markus Tolnay’s group at the University of Basel, Switzerland, was, in fact, inspired by Braak staging of Alzheimer disease (AD). The findings add weight to reports that tau pathology can spread from cell to cell in vitro. Marc Diamond, University of California, San Francisco, found that tau aggregates can get into and corrupt normal tau inside cells and that once aggregation occurs in one cell, it can trigger transfer to adjacent cells in culture (see ARF related news story and ARF news story). “I think our data help support their findings and their findings give our work in vivo relevance,” Diamond said in an interview with ARF.

Diamond also suggested the work might have implications that reach far beyond tau pathology and Alzheimer disease (AD). “One of the reasons this paper is so significant is it comes on the heels of observations on Parkinson’s patients who received neural transplants,” said Diamond. Those studies showed that Lewy bodies, which are predominantly made up of aggregates of the intracellular protein α-synuclein, also developed in the grafted tissue (see ARF related news story). “One interpretation of those observations is that some aggregated protein in the neighboring cells can corrupt the protein in the new cells,” said Diamond. If true, that would support the idea that α-synuclein, tau, and possibly other proteins involved in neurodegeneration, such as huntingtin (see ARF related news story), may behave somewhat like prions.

To test the idea that tau pathology can self-propagate, first author Florence Clavaguera and colleagues took brain samples from P301S tau transgenic mice, which develop filamentous tau aggregates, and injected them into the hippocampus or cerebral cortex of another transgenic strain—the ALZ17 mouse. ALZ17 mice overexpress normal human tau but do not develop tau pathology—though they may be more vulnerable to it. Homogenates from six-month-old P301S mice induced the formation of tau filaments when injected into three-month-old ALZ17 mice. Extracts from non-transgenic mice had no effect. Since human tau expressed in the ALZ17 mice has a different N-terminal sequence to that of the P301S tau, the researchers could ensure that the tau filaments formed were indeed due to the endogenous ALZ17 tau, and not to the injected material. Extracts immuno-depleted of tau had no activity.

The induction of tau filaments was dependent on both time and place. The process was slow. Pathology was first apparent at six months and became more robust at 12–15 months. Filaments appeared faster in the hippocampus than in the cortex. The pathology seems to be caused by some form of insoluble tau, since extracts of soluble material were 20-fold less potent. “Currently, all we know is that there is something in the brain extracts that is quite powerful at inducing tau pathology and that it is insoluble,” said Goedert. “We would like to find out what that substance is, whether it is fibrils, some oligomeric form, or what exactly it is that has the activity.” The same question is plaguing researchers trying to find what entity seeds amyloid-β aggregation in vivo (see ARF related news story and Bolmont et al., 2007).

Interestingly, the pathology spread in the injected mice in a manner that is consistent with the Braak staging idea in that it seems to occur between anatomically connected areas of the brain. But it also appeared in regions that are not typically associated with AD tau pathology. “I am surprised by the number of areas where they see positivity,” said Walker. “It’s everything from the medial lemniscus, which is in a sensory pathway in the brain, to the hypothalamus and the zona incerta. A lot of different areas are affected, but they do have connections with areas that are connected to the injection site,” he said. Goedert stressed that he and his collaborators are not suggesting this as a model for tau transmission in the human brain. “All we can say is that regions where pathology appeared over time were all anatomically connected,” he said.

Interestingly, even though the injected ALZ17 mice developed robust tau pathology, it did not lead to neurodegeneration and cell loss that occurs in the P301S mice. “This suggests that the molecular tau species responsible for transmission and neurotoxicity are not identical,” write the authors. They suggest that, much like prions, distinct tau strains are at work in the mice and may also underlie different tauopathies, such as Pick disease, progressive supranuclear palsy, and AD, which are characterized by different tau isoform assemblies. That’s not to say that tau is a prion. “The big difference is the ease with which the diseases are communicated,” said Walker. “There’s no evidence that tauopathy or Aβ can be transmitted in the same way as prion diseases can, so there may be something about prions that makes them better at transmitting structural information that causes disease.” Diamond suggested that one thing that makes prions unique is that they are incredibly tough. “You can eat them and they will get into your brain. Most of these other proteins, tau, and α-synuclein are vulnerable to proteases and readily digested,” he said.

If tau and α-synuclein toxicities do propagate in some prion-like fashion, then might that offer some new clues as to how to treat these diseases? “That might be possible, but the first thing we have to do is understand the mechanism,” said Goedert. Diamond expressed a similar sentiment. “You can think about disease from the standpoint of what happens in one cell, such as tau gets phosphorylated, misfolds, and causes the cell to get sick, but if you are thinking about how the process propagates between cells, that’s an entirely new way of thinking about therapies,” he said. He suggested that the reach of antibody therapy might extend to these intracellular proteins, for example. “If you understand the mechanisms of how aggregates move between cells and corrupt the protein on the inside of cells, that’s a new therapeutic target that could become a silver bullet for all neurodegenerative diseases that are associated with fibrillar proteins, since we have now seen this prion-like property in tau, α-synuclein, and Aβ,” he said.

Walker agreed. “Mechanistically, the fact that these diseases behave so similarly in tissues and cells, suggests there might be some common mechanism that will help us to understand not just Alzheimer disease but maybe 30 to 40 different proteopathies that all involve the accumulation of protein,” he said.—Tom Fagan.

Reference:
Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M. Transmission and spreading of tauopathy in transgenic mouse brain. Nature Cell Biology 2008 June 7 advance online publication. Abstract

 
Comments on News and Primary Papers
  Primary Papers: Transmission and spreading of tauopathy in transgenic mouse brain.

Comment by:  Jurgen Goetz, ARF Advisor
Submitted 16 June 2009  |  Permalink Posted 16 June 2009

The title of this remarkable paper in Nature Cell Biology highlights two key findings: that a tau pathology can be transmitted in vivo, and that it spreads through the brain. The former is a feature of transmissible prions (a characteristic as enigmatic as to elude comprehension), while the latter addresses a key feature of the human Alzheimer pathology, one that despite major recent achievements has not been fully modeled in transgenic mice.

The study uses two mouse strains: ALZ17 mice express high levels of wild-type human tau but reveal only a modest pathology: amyotrophy in the absence of obvious neuronal cell loss and, despite massive hyperphosphorylation of tau, no formation of tau-containing neurofibrillary lesions. In contrast, P301S mice express, at levels comparable to the ALZ17 mice, a mutant form of tau found in familial cases of frontotemporal dementia. Although rarer than the P301L mutation, this mutation causes an earlier onset of pathology in humans. This may explain why the P301S mice present with a particularly robust phenotype, characterized by...  Read more


  Primary Papers: Transmission and spreading of tauopathy in transgenic mouse brain.

Comment by:  Einar Sigurdsson (Disclosure)
Submitted 16 June 2009  |  Permalink Posted 16 June 2009

Clavaguera and colleagues demonstrate in this elegant study that an injection of a brain extract from P301S tau mice induces aggregation of wild-type tau in mice expressing human or mouse tau. The pathology spreads to anatomically connected brain regions in mice transgenic for human tau but not in wild-type mice expressing only mouse tau. As discussed, tau expression levels may influence the spread, and human tau may also be more prone to aggregate than mouse tau.

These interesting and important in vivo findings tie nicely in with recent cell culture data (1), and support the view that clearance of extracellular tau may have a therapeutic utility, ideally in concert with removal of pathological intracellular tau (2,3). As previously reported, extracellular tau may not only be derived from dead cells but may be secreted and have an extracellular function (4). As discussed in more detail elsewhere (3), it is then conceivable that clearance of extracellular tau can enhance secretion of intracellular tau through a shift in equilibrium, and indirectly reduce pathological tau...  Read more


  Comment by:  Makoto Higuchi
Submitted 17 June 2009  |  Permalink Posted 17 June 2009

The work on murine models of tauopathies conducted by Clavaguera et al. has brought an intriguing view that fibrillar tau pathologies are intracranially transmittable from a single site affected by injected and possibly endogenous tau aggregates. The spreading of Gallyas-positive tau depositions was seemingly consequent to a chain reaction of fibrillogenesis consisting of either transgenically overproduced or endogenously expressed wild-type tau proteins, while the injected brain extracts from transgenic mice expressing the FTDP-17 P301S mutant tau only gave the initial seed for this surge of tangles. Since a PBS-soluble fraction of the extract did not induce overt changes in tau pathology, it is unlikely that monomeric foreign tau proteins convert the conformation of resident tau molecules from a flexible mode to a rigid, more amyloidogenic type, but insoluble tau assemblies preformed in the donor mice acted as seeds of massive inclusions. Pieces of these protein chunks might be axonally transported, and could be the secondary seeds at remote regions. Mechanisms by which alien...  Read more

  Comment by:  Lary Walker, ARF Advisor
Submitted 17 June 2009  |  Permalink Posted 17 June 2009

Clavaguera, Tolnay, Goedert, and colleagues present a compelling argument for the exogenous induction and endogenous spread of tauopathy in rodent models. In these experiments, tauopathy was seeded de novo both in a transgenic mouse strain that normally does not generate filamentous tau, and even (to a lesser degree) in non-transgenic mice. Insoluble tau was the most potent seed, and in both murine host strains the tau filaments that developed consisted of host tau protein. Three key findings are that 1) tauopathy can be seeded within neurons in the living brain by an exogenous seed; 2) once initiated, tauopathy spreads from one brain region to another, possibly via a chain reaction of molecular corruption along with intracellular and intercellular trafficking; and 3) aggregated tau (like prions, Aβ, and probably other pathogenic proteins) may exist as polymorphic and polyfunctional strains, the pathogenicity of which is governed by the characteristics of the corruptive seed and of the host. The findings add to the evidence that disorders of protein...  Read more

  Comment by:  Seung-Jae Lee, Eliezer Masliah
Submitted 18 June 2009  |  Permalink Posted 18 June 2009

Propagation and Prion-like Spreading of Proteins in Common Neurodegenerative Disorders; New Perspectives Emerging From Tau and Synuclein
Many major neurodegenerative diseases are characterized by protein aggregation and deposition in specific regions of brain. This protein pathology generally occurs in discrete regions of brain but eventually spreads into much larger areas (1,2). Several recent studies propose a prion-like, templated aggregation hypothesis regarding the mechanism underlying this propagation of disease-specific protein aggregation (3-5). The most recent report supporting this hypothesis has come from the work by Goedert, Tolnay, and their colleagues, who studied the propagation of tauopathy in transgenic mouse brain (6). In this study, they injected the brain extract of P301S tau transgenic mouse, which has filamentous tau aggregates, into the hippocampus and cerebral cortex of ALZ17, a transgenic line overexpressing wild type tau protein, and examined the spread of tau pathology over time. They found the spread of tauopathy not only within the...  Read more

  Primary Papers: Transmission and spreading of tauopathy in transgenic mouse brain.

Comment by:  John Trojanowski, ARF Advisor
Submitted 23 June 2009  |  Permalink Posted 23 June 2009

This is a provocative and exceptionally well-done study that convincingly demonstrates the CNS spread of tau pathology induced by the injection of P301S transgenic (tg) mouse brain homogenates containing P301S pathological mutant tau into the brains of wild-type tau tg and non-tg mice. However, I do think the use of the term “transmission” in the paper is unfortunate because this conjures up the idea that tauopathies may be infectious diseases like transmissible spongiform encephalitises (TSEs), as exemplified by mad cow disease and Creutzfeldt-Jacob disease (CJD). The concern comes from the fact that Alzheimer’s disease (AD) is the most common neurodegenerative tauopathy and this report could raise unwarranted worries on the part of the public or public health officials that AD is infectious and could be spread by contact with the millions of AD patients throughout the world. Although many studies by Carlton Gajdusek (e.g., see Godec et al., 1991) and others over the years failed to show reproducible evidence of transmission of AD by...  Read more
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad