Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Double Paper Alert—Keystone Presentations Now in Press
21 March 2009. Two topics we covered from the recent Keystone symposium “Neurodegeneration: New Molecular Mechanisms,” held 17-22 February in Keystone, Colorado, have gone to press. In yesterday’s Science, researchers led by Bart De Strooper, VIB, KU Leuven, Belgium, report on the heterogeneity of γ-secretase isoforms, while in a paper in the March 11 Journal of Biological Chemistry, Marc Diamond and colleagues at the University of California, San Francisco, report that tau misfolding can be propagated from cell to cell. Diamond’s work brings new insight into the pathophysiology of tauopathies (see ARF related news story), while the work from De Strooper’s group may help researchers develop more specific γ-secretase inhibitors to tackle Alzheimer disease (see ARF related Keystone news story).

De Strooper and colleagues report that knocking out the B/C isoforms of Aph1, a crucial component of the γ-secretase complex, protects a double transgenic mouse model of AD (APP/PS1) against learning and memory deficits. The work suggests that the Aph1A isoform is the one that contributes most to amyloidogenic processing of APP. The Aph1B/C deficient mice also have a much lower Aβ burden in the brain. Joint first authors Lutgarde Serneels and Jérôme Van Biervliet and colleagues also found that Aph1B- or Aph1C-containing γ-secretases churn out proportionately longer Aβ peptides than do Aph1A containing proteases and also have a different structural conformation. Notch processing in Aph1B/C-deficient animals also appears normal. “Since the Aph1B γ-secretase complex is present and active in the human brain, the selective inhibition of this complex has the potential to translate into an approach to lower Aβ peptide production in human AD with relatively few side effects,” write the authors.

In the JBC paper, Diamond and colleagues report that extracellular aggregates of tau are taken up by cultured cells and can seed intracellular fibril formation. First author Bess Frost and colleagues also show that intracellular tau can transfer between cells in culture. “Our data indicate that tau aggregates can propagate a fibrillar, misfolded state from the outside to the inside of a cell,” write the authors. The work may open up a new appreciation of how tau pathologies spread in the brain. In AD, for example, “ghost,” or extracellular tau tangles, presumably left behind from dead or dying cells, could be silos for spreading aggregation seeds or templates among healthy cells. “Propagation via progressive, templated misfolding suggests a general pathogenic mechanism for other neurodegenerative diseases linked to amyloid protein aggregation,” suggest the authors.—Tom Fagan.

References:
Serneels L, Van Biervliet J, Craessaerts K, Dejaegere T, Horre K, Van Houtvin T, Esselmann H, Paul S, Schafer MK, Berezovska O, Hyman BT, Sprangers B, Sciot R, Moons L, Jucker M, Yang Z, May PC, Karran E, Wiltfang J, D’Hooge R, De Strooper B. gamma-secretase heterogeneity in the Aph1 subunit: Relevance for Alzheimer’s disease. Science. 2009, March 19, online.
Abstract

Frost B, Jacks RL, Diamond MI. Propagation of tau misfolding from the outside to the inside of a cell. Journal of Biological Chemistry. 2009, March 11. Abstract

 
Comments on News and Primary Papers
  Primary Papers: Propagation of tau misfolding from the outside to the inside of a cell.

Comment by:  George Perry (Disclosure)
Submitted 15 April 2009  |  Permalink Posted 21 April 2009
  I recommend this paper

  Primary Papers: gamma-Secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer's disease.

Comment by:  Michael Wolfe, ARF Advisor
Submitted 6 January 2010  |  Permalink Posted 6 January 2010

This paper describes the role of the different Aph1 subtypes in the production of Aβ and in Notch-related toxicities. The evidence suggests that Aph1B-containing γ-secretase complexes would be worthwhile targets, if one could selectively hit this type of γ- secretase complex and not Aph1A-containing complexes. Aph1B- containing complexes clearly play the major role in Aβ production in the brain and do not contribute much to Notch signaling, at least in mice. This can be fully explained by differential tissue expression between Aph1A and B, though, and not by biochemical differences, as suggested by the authors. Aph1B-containing complexes may be a very worthwhile target, if there are any biochemical differences that can be exploited by small molecule inhibitors (which remains to be seen).

View all comments by Michael Wolfe

  Comment by:  P. Hemachandra Reddy
Submitted 18 March 2013  |  Permalink Posted 19 March 2013
  I recommend the Primary Papers

  Primary Papers: Propagation of tau misfolding from the outside to the inside of a cell.

Comment by:  P. Hemachandra Reddy
Submitted 18 March 2013  |  Permalink Posted 19 March 2013
  I recommend this paper
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad