Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Keystone Drug News: Glimpse of Lilly’s Phase 1 Passive Vaccine
9 April 2008. Antibody therapies for AD have galvanized researchers, affected families, and observers from academia, industry, and even the investment community. Speakers at the Keystone meeting, held March 24 to 29 in Keystone, Colorado, deferred major news announcement on this topic to the upcoming ICAD conference this July in Chicago, but some morsels did slip out. Eli Lilly and Company’s passive immunotherapy reportedly was safe in an initial Phase 1 trial, though it may not act solely through a peripheral sink effect as previously proposed. Instead, a small proportion of the antibody enters the brain, where it appears to sequester forms of Aβ that are in equilibrium with aggregation and plaque formation. This increases the total CSF Aβ pool; however, a CSF Aβ fraction that is not bound to antibody appears to decrease. Besides this treatment, a range of other immunotherapies have by now entered human trials.

Ron DeMattos from Eli Lilly and Co., Indianapolis, introduced his talk with an overview of immunotherapies that are wending their way through the clinical pipeline. Active vaccines include Elan’s ACC-OO1 in Phase 2, Novartis’s CAD-106 in Phase 1, and Merck’s V950 in Phase 1. All three are based on the N-terminal of the Aβ peptide and are thought to stimulate an antibody-driven immune response that clears Aβ primarily through a mechanism of Fc-mediated endocytosis of antibody-decorated amyloid into microglia. Passive immunotherapies, where patients receive an antibody infusion, include a pharmacogenomic set of two Phase 3 trials for Elan’s bapineuzimap; Lilly’s LY2062430, which concluded a Phase 2 trial last month; Baxter’s small Phase 2 trial of its pooled IVIg preparation (aka Gammaguard ); as well as Phase 1 trials by Pfizer, GlaxoSmithKline, and Hoffman-La Roche/Morphosys.

While the trials play out, a major research question concerns the mechanisms by which these experimental therapies act. The three that have been proposed—phagocytic clearance, inhibition of fibrillogenesis, and peripheral sink—are not mutually exclusive, but it’s still debated which ones are at play in humans or whether there will be a single consensus mechanism. In his talk, DeMattos focused on the peripheral sink hypothesis, an indirect mechanism of amyloid clearance that his and colleagues’ research had suggested might cause a net efflux of Aβ from brain to plasma (DeMattos et al., 2001). In essence, the idea was that a peripheral antibody might be able to draw Aβ from the brain indirectly by shifting transport equilibria between the brain and blood and delivering brain Aβ to clearance in the liver and kidneys. The star in this hypothesis is m266. Called a “capture antibody,” this IgG binds epitopes 16 to 24 in the mid-section of soluble Aβ very tightly, prying it away from chaperones and other endogenous proteins that otherwise stick to Aβ. By contrast, m266 does not bind Aβ deposited in plaques, as do many other candidate immunotherapy antibodies.

In preparing m266 for the clinic, Lilly scientists humanized it. In parallel, they studied in detail how m266 perturbed the Aβ transport equilibrium between the plasma and CSF in PDAPP mice and non-transgenic rats. In the process, they also developed CSF biomarkers tailored to this specific treatment. In describing this research, DeMattos seemed to be gingerly stepping away from the original peripheral sink mechanism, though that appeared not to affect the therapeutic promise of m266 immunotherapy.

DeMattos reported that, as previously seen in PDAPP mice, intravenous m266 in rats caused m266-bound Aβ to shoot up 250-fold in plasma within a day. But the antibody also showed up in the CSF two hours after the injection, and in this compartment it reached an equilibrium of 0.08 to 0.14 percent with plasma antibody within the day. In the CSF, then, Aβ40 and 42 levels also increased. To understand what that meant, the scientists developed an assay that can distinguish between the total CSF Aβ pool (i.e., Aβ bound and unbound to IgG) and the pool of unbound Aβ. A subsequent rat study injecting three different doses of m266 showed a dose-dependent increase in total CSF Aβ but a dose-dependent decrease of the pool that is not bound to m266.

By this mechanism, plasma m266 would not initially draw Aβ out of the CSF but instead enter the CSF and disrupt an equilibrium there. The idea behind it is that soluble and insoluble Aβ are in a pathogenic equilibrium, and that decreasing the former by means of m266 would reduce the supply of Aβ available for aggregation and deposition, gradually shrinking amyloid pathology in that way. DeMattos noted that because both the peripheral and central mechanisms of the antibody occur simultaneously, it was impossible to identify which one was primarily responsible for the decreased unbound CSF Aβ. How local m266 mechanisms in the CSF interact with peripheral mechanisms in plasma is at yet unclear, DeMattos said.

DeMattos then offered a brief summary of the Phase 1 trial, promising full data of the Phase 2 trial for ICAD this July. In brief, study volunteers received placebo or one of three doses of m266. Their plasma Aβ40 increased as expected, though with a slower time course than seen in the animal studies. Their CSF likewise showed an increase in total Aβ, both 40 and 42. This trial did not have an assay for free Aβ, but that critical piece will come with the Phase 2 data, DeMattos said.

It’s unclear at present what happens to the antibody-bound Aβ accumulating in the CSF—whether it gets swiftly degraded or might cause complications. Antibody-Aβ complex that forms in the CNS may traffic to the periphery and get eliminated via normal IgG catabolism. That would be consistent with the original premise of the peripheral sink, but the time course of this traffic and degradation remains unknown. What is known, DeMattos noted, is that m266’s mechanism does not involve inflammatory processes. Nor have the Lilly scientists seen effects on CAA or CAA-related microhemorrhages with this antibody, at least in PDAPP mice.

This conference data comes as the latest word in an ongoing debate about m266. Earlier this year, Peter Seubert and colleagues at Elan Pharmaceuticals reported that, in their hands, m266 failed to shrink amyloidosis in PDAPP mice; it even tended to increase it. These scientists also noted that binding to m266 prolonged the normal degradation of Aβ (Seubert et al., 2008). As is often the case, this scientific discrepancy may find its resolution in the clinic.—Gabrielle Strobel.

 
Comments on News and Primary Papers
  Comment by:  Davide Tampellini
Submitted 9 April 2008  |  Permalink Posted 11 April 2008

This excellent discussion omitted a fourth mechanism whereby Aβ antibodies can act: clearance of intraneuronal Aβ (Tampellini et al 2007; Arbel and Solomon, 2007; Oddo et al., 2004; Billings et al., 2005). The new evidence on antibody m266 described by DeMattos underscores the importance of Aβ antibody access to the CNS. It is interesting that similarly to antibody 4G8 (residues 17 to 24), m266 binds epitopes 16 to 24; therefore, it might also be endocytosed by neurons via APP and clear the intraneuronal pool of Aβ.

References:
Tampellini D, Magrané J, Takahashi RH, Li F, Lin MT, Almeida CG, Gouras GK. Internalized antibodies to the Abeta domain of APP reduce neuronal Abeta and protect against synaptic alterations. J Biol Chem. 2007 Jun 29;282(26):18895-906. Abstract

Arbel M, Solomon B. Immunotherapy for Alzheimer's disease: attacking amyloid-beta from the inside. Trends Immunol. 2007 Dec;28(12):511-3. Abstract

Oddo S, Billings L, Kesslak JP, Cribbs DH, Laferla FM. Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron. 2004 Aug 5;43(3):321-32. Abstract

Billings LM, Oddo S, Green KN, McGaugh JL, Laferla FM. Intraneuronal Abeta causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron. 2005 Mar 3;45(5):675-88. Abstract

View all comments by Davide Tampellini


  Comment by:  Tyler A. Kokjohn, Alex E. Roher
Submitted 21 April 2008  |  Permalink Posted 21 April 2008

Therapeutic vaccination trials in Tg animals and humans have revealed that senile plaques, a cardinal pathologic feature of AD, are dynamic structures subject to dissolution by Aβ immunotherapy. Although Aβ deposits are a logical AD therapeutic focus, it remains unclear whether the deposited or soluble forms of this molecule are the most toxic. Indeed, senile plaques may represent a mechanism of defense whereby excessive harmful levels of soluble Aβ peptides are inactivated into fibrillar core structures surrounded by glial cells. Disturbing these deposits may be harmful to the brain. Understanding the dynamic balance between Aβ pools and their function may add clarity and suggest new routes to improve AD therapeutic strategies.

We eagerly await the upcoming disclosure of several Aβ vaccination clinical trials. The ultimate success of this approach hinges on both the adequate access of anti-Aβ antibodies to the CNS as well as their final Aβ disposal. Previous work revealed that given peripheral titers of sufficient magnitude, small, but effective, amounts of antibody reach...  Read more

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad