Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Fighting Fire With Fire—Transthyretin Therapy for Aβ?
16 February 2008. Transthyretin is one of a handful of proteins that, like amyloid-β, can adopt a β-sheet conformation and aggregate as amyloid. So it may seem counterintuitive that transthyretin could be used to prevent Aβ toxicity, yet that is exactly the proposition of a paper in this week’s PNAS online. Researchers led by Joel Buxbaum at The Scripps Research Institute, La Jolla, California, report that transthyretin (TTR) protects against Aβ pathology in mice. They suggest that TTR works like a chaperone and hint that this activity might lead to new therapeutic approaches to treating Alzheimer disease.

Transthyretin is a serum and cerebrospinal fluid (CSF) carrier that binds thyroid hormones and other small molecules. It also binds to Aβ in the CSF (see Schwarzman et al., 1994), is found adjacent to Aβ plaques in transgenic mice, and prevents Aβ aggregation in C. elegans (see Link, 1995). In addition, Aβ deposition speeds up when one copy of TTR is deleted in APP/presenilin double transgenic (APPSwe/PS1δE9) mice (see Choi et al., 2007), so the idea that transthyretin may be protective in AD is not new. Now, Buxbaum and colleagues show that overexpressing TTR is also protective in mice and that TTR physically binds to Aβ, which supports the notion that “increasing cerebral TTR synthesis is a potential therapeutic/prophylactic approach to human AD,” as the authors suggest.

Buxbaum and colleagues evaluated the offspring of APP23 transgenic mice (expressing human APP carrying the Swedish mutation) crossed with animals overexpressing human TTR. They also evaluated what happens when TTR is missing by testing APP23 mice generated in a mouse TTR-negative background. The investigators found that overexpressing human TTR protects mice against cognitive and spatial deficits. In the Barnes maze test, 15-month-old APP23 animals had more errors and fared more poorly in finding the escape hole than did wild-type animals. APP23 mice overexpressing human TTR performed about as well as wild-type controls, indicating a protective effect of transthyretin. Lack of endogenous mouse TTR had the opposite effect. Younger (5.5 months old) APP23 mice performed about as well as controls, but in the absence of mouse TTR the animals made significant errors.

Immunohistochemical analysis indicates that these behavioral changes are related to Aβ pathology. While APP23 animals normally have Aβ deposits by 16 months, three out of 24 APP23/hTTR animals had no detectable deposits by that age, and in those that had detectable deposits, they were significantly fewer (around half), and soluble Aβ levels were also about half compared to control APP23 animals. In contrast, the researchers found detectable Aβ deposits in seven of 11 5.5-month-old APP23 mice lacking endogenous TTR—Aβ deposits are normally very rare in mice at that age. The amount of formic acid-soluble Aβ was nearly doubled in the mTTR-negative mice as well.

Correlating Aβ levels and deposits with TTR does mean the two proteins react physically, but the researchers showed, using surface plasmon resonance, that TTR interacts with Aβ monomers (both Aβ40 and Aβ42) and fibrils. Interestingly, mouse TTR had much higher affinity for any Aβ form than did human TTR.

All told, the findings indicate that TTR can ameliorate the pathology and behavioral symptoms associated with Aβ overproduction in a mammalian model. “It appears that the interaction is physical and that TTR may behave in a chaperone-like manner for molecular species of Aβ larger than monomers. The observations support the novel notion that increasing cerebral TTR synthesis is a potential therapeutic/prophylactic approach to human AD,” write the authors.—Tom Fagan.

Reference:
Buxbaum JN, Ye Z, Reixach N, Friske L, Levy C, Das P, Golde T, Masliah E, Roberts A, Bartfai T. Transthyretin protects Alzheimer’s mice from the behavioral and biochemical effects of Aβ toxicity. PNAS online. 2008 Feb 12. Abstract

 
Comments on News and Primary Papers
  Primary Papers: Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects of Abeta toxicity.

Comment by:  Chris Link
Submitted 19 February 2008  |  Permalink Posted 19 February 2008

Transthyretin is an abundant blood protein that binds and transports thyroid hormones. It has been known for a number of years that transthyretin can also bind the β amyloid peptide (Aβ) associated with Alzheimer disease. Both in vitro studies and in vivo studies using the nematode worm C. elegans have shown that transthyretin can inhibit the aggregation of Aβ into insoluble amyloid fibers. This study by Buxbaum et al. uses transgenic mouse models to demonstrate that increased expression of transthyretin can protect transgenic mice from behavioral deficits caused by Aβ expression, and loss of transthyretin expression exacerbates these behavioral deficits. These studies support the idea that transthyretin might have a natural role as a chaperone protein for Aβ, serving to combat the aggregation of Aβ into amyloid or some other toxic form.

Could manipulation of transthyretin expression in people help protect them from Alzheimer disease? This is a tricky question, because paradoxically transthyretin itself is associated with amyloid disease. Familial amyloid...  Read more


  Primary Papers: Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects of Abeta toxicity.

Comment by:  Joao Sousa
Submitted 10 March 2008  |  Permalink Posted 11 March 2008

Transthyretin (TTR) is a blood and cerebrospinal fluid (CSF) carrier protein for thyroxine and retinol (in association with the retinol-binding protein). In the last few years an increasing number of reports have linked TTR to Alzheimer disease (AD). Specifically, TTR has been suggested as a neuroprotective factor for disease progression, given its ability to sequester and clear the amyloid-β peptide (Aβ) out of the brain.

This article generally confirms the previous reports for a role of TTR in AD. The study shows that 1) in the absence of TTR there is increased amyloid load in the brain of APP transgenic mice; 2) overexpression of 90 copies of the human TTR gene in APP transgenic mice decreases amyloid load; 3) TTR overexpression in APP transgenic mice reverts the cognitive impairment normally observed in this animal model of AD. Of note, this study confirms a previous one (1) in which the absence of TTR was shown to accelerate the memory decline normally associated with age. This may be related to a TTR function that is ”independent of its interaction with Aβ,” as...  Read more


  Primary Papers: Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects of Abeta toxicity.

Comment by:  Efrat Levy
Submitted 21 March 2008  |  Permalink Posted 21 March 2008

This paper shows that overexpression of wild-type human transthyretin (TTR) in APP transgenic mice ameliorates Aβ amyloid deposition and improves cognitive function. Targeted silencing of the mouse endogenous TTR gene accelerated the development of the neuropathologic phenotype, confirming recent reports of enhanced TTR expression in the brain of APP transgenic mice and enhanced Aβ amyloid deposition in these mice lacking TTR. Using in vitro techniques, a direct binding between TTR and Aβ is shown, extending previous in vitro studies by Alexander L. Scharzman and Dmitry Goldgaber that showed that binding of TTR to Aβ results in decreased amyloid formation.

While the precise molecular nature of the transthyretin-binding species of Aβ was not defined, the data show that tetrameric TTR binds aggregated Aβ. The findings suggest that a physical interaction between TTR and Aβ prevents the toxicity and plaque formation by interfering with aggregation of Aβ species larger than monomers. While the endogenous protein most likely has an ongoing role in prevention of amyloid formation,...  Read more


  Comment by:  Isabel Cardoso
Submitted 25 March 2008  |  Permalink Posted 27 March 2008

Transthyretin (TTR) interaction with Aβ in the CSF has been known at least since 1994 when Schwarzman and colleagues (Schwarzman et al., 1994) concluded that TTR was the major Aβ binding protein in the CSF, observing a decrease in the aggregation state of the peptide. Two years later, the same group confirmed the inhibitory effect of TTR on Aβ formation and consequent reduction in its toxicity (Schwarzman et al., 1996). Later on, the same group of researchers performed in vitro studies using different TTR mutations and concluded on the differential binding (i.e., physical interaction) and inhibition of Aβ aggregation by those variants to (Schwarzman et al., 2004). At this point, the characterization of the interaction between the two molecules was missing.

The work by Buxbaum and coworkers further explores the protective role of TTR using animal models, but does not unravel mechanisms behind the observed protection; details on the physical interaction between the two molecules are still missing.

A recent report by Costa et al., FEBS Letters, provides a Kd for the WT TTR...  Read more

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad