Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
San Diego: “Calcinists” See Years of Compensation Prior to Alzheimer’s
20 November 2007. If our summary on Aβ oligomers from the recent conference of the Society for Neuroscience delivered an overdose of news on synaptotoxic Aβ, take this story as an antidote. Held 3-7 November in San Diego, California, the conference featured a wealth of presentations to reflect a broadening knowledge base about this disease, and the role of presenilin and calcium in AD pathogenesis is one of the exciting examples. Perturbations to the neuronal calcium balance in both aging and AD have been described for some years and have led to a calcium hypothesis of brain aging and dementia. What is new is an evolving concept tying intraneuronal calcium increases in important functional ways to known players in AD risk and pathogenesis, that is, to presenilin (PS) mutations, APP mutations, ApoE4, synaptic dysfunction, apoptosis. In particular, new research is trying to assess these links in model systems at early stages, long before visible pathologies have formed and could confound results. In essence, the new calcium research is reaching for a grasp of how subtle disease-promoting changes play against compensatory mechanisms that the neuron deploys to maintain homeostasis. “Calcinists” view the emergence of amyloid and tau pathology as the result of a breakdown of this compensation. As a conference offering, below is a summary of one such presentation by Grace (aka Beth) Stutzmann at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois. For a broader view, read her eloquent review, published last month (Stutzmann, 2007).

In her talk, Stutzmann focused on the role of presenilin (PS) mutations and the ryanodine receptor. Unlike presenilin, this receptor is not a household term among “Alzheimerologists.” In a nutshell, Stutzmann proposed that, in mice expressing mutant human presenilin 1, the ryanodine receptor is hyperexcitable. Prone to dumping large amounts of Ca2+ from ER stores preferentially into distal dendrites and synaptic spines, it tends to end up dampening the activity of those synapses.

For background, Stutzmann first reminded the audience that neurons maintain a deep valley of nanomolar Ca2+ in the cytosol vis-à-vis millimolar Ca2+ outside the cell membrane on one side, and high micromolar Ca2+ inside the endoplasmic reticulum (ER) on the other side. Multiple different calcium channels and pumps in the cell membrane and the ER membrane are necessary to keep Ca2+ distributed across these gradients. In previous work, Stutzmann had set up a system that combines whole-cell patch clamp recordings with 2-photon imaging of calcium flows. This is done in thick, 300-micron cortical slabs from various mouse models. She routinely isolates three types of calcium response:

  • One through the plasma membrane (where action potentials trigger calcium flow through voltage-gated Ca2+ channels)
  • One through the IP3 receptor in the ER membrane (triggered by photolysis of caged IP3)
  • One through the lesser-known ryanodine receptor (using its agonist caffeine and its blocker dantrolene)
Together, this experimental setup serves as a “holistic” system of assessing neurophysiologic consequences of specific calcium changes, Stutzmann said.

Stutzmann had shown before that neurons from triple transgenic mice created in Frank LaFerla’s lab, where she had been a postdoctoral fellow, readily show much stronger calcium outflows from the ER than do those of non-transgenic mice. By comparing this strain with a different model overexpressing only mutant PS1, and with an APP/tau double transgenic, she attributed this defect in calcium management to presenilin. The present focus on the ryanodine receptor arose with the twin observations that PS1-transgenic mice have elevated levels of ryanodine receptor protein, and that blocking this receptor normalized excessive calcium outflow from the ER. In the presenilin transgenic mice, the ryanodine receptor mediated the majority of this particular calcium flow, up from 20 percent in normal mice to 70 percent in the mutant mice (Stutzmann et al., 2006).

At the conference, Stutzmann showed newer data suggesting that the ER within the distal dendrites and even spines releases the greatest relative increases in ryanodine-triggered calcium in the PS1-mutant mice; it is not the ER around the nucleus and cell body where most textbook diagrams depict it to be. (The ER is known to extend into dendrites and even into spine heads; see picture below.) Those distal ER tips show little ryanodine receptor-mediated Ca2+ release in non-transgenic mice, but in PS1-mutant they increase this flow dramatically by 10-fold. By contrast, the ER in the cell body about doubled its ryanodine receptor-mediated outflow. This suggests that the synaptic areas of the ER are functionally separate from what is going on in the cell body, Stutzmann said.

Three-dimensional Reconstruction of the Smooth ER (Purple) in a Rat Hippocampal CA1 Dendritic Segment
The left side shows that the ER in the dendrite is contiguous with the ER entering the thin neck of a dendritic spine (grey). The smooth ER in the head of the spine (right) is thought to provide synapse-specific regulation of calcium release, and modulate incoming synaptic signals (Reproduced from SynapseWeb; Spacek and Harris, 1997).

Does this mean anything to cortical neurons? These cells integrate multiple signals, and then generate a summed reaction. Stutzmann tried to model this behavior by assessing calcium release from the ER in response to either synaptic stimulation or ryanodine receptor activation alone, or both in combination. In the latter experiment, she saw a supra-additive depletion of ER calcium stores in the PS1-transgenic mice. Further experiments showed that this leads to greater membrane hyperpolarization. And this, in turn, hampered the synapses’ ability to generate trains of action potentials in response to electrical stimulation, essentially making the neuron less excitable (Stutzmann et al., 2007). “A main point here is that, depending on where it is dumped from the ER, this extra calcium will have very different functional consequences for the neuron,” Stutzmann said. (Links between ryanodine receptor function and mitochondria and apoptosis, for example, have been reported, as well.)

The existing literature indicates no change in synaptic transmission or synaptic plasticity in the triple transgenic mice at the young ages of 4 to 6 weeks, and Stutzmann’s group confirmed these findings. Yet she felt she had not looked hard enough. Maybe there was a compensatory effort hidden behind the curtain of this normal-looking output? “Calcium plays such a big role in synaptic transmission and plasticity, I don’t see how you can mess with it on a major scale and not affect those functions,” Stutzmann added. To peek behind the curtain, she blocked the ryanodine receptor with the drug dantrolene. In non-transgenic mice, this did away with about half the LTP output, but in PS1-transgenic mice it abolished LTP completely.

To Stutzmann’s mind, this suggests that the ryanodine receptor calcium stores in the dendritic tips of the ER contribute to synaptic function quite differently when there is a PS1 mutation. That the neurons at this age still manage to generate normal-looking LTP means that they are compensating, she said. This happens before any AD-like histopathology can be detected. Speculating about PS1-mutant FAD, this could imply that people are born with these different calcium dynamics and compensate well, until years of effort to maintain homeostasis exhaust the neuron and it switches from compensation to pathology. One future experiment would be to slightly dial down the ryanodine receptor over longer periods of time with drugs such as dantrolene, and ask whether that can keep AD-like pathology and behavioral deficits at bay in those models.

This summary covers but one area of active research on calcium flows in AD models. Effects of presenilin on ER calcium were established by a number of groups (Tu et al., 2006; Nelson et al., 2007; LaFerla, 2002), and the link between the ryanodine receptor, calcium, and AD is even older (Querfurth et al., 1998). Current questions focus on the relative contributions of the ryanodine versus the inositol trisphosphate IP3 receptor, as well as on how the two interact. This writer invites comments on these issues to broaden the discussion.—Gabrielle Strobel.

 
Comments on News and Primary Papers
  Comment by:  Philip Landfield, Olivier Thibault
Submitted 30 November 2007  |  Permalink Posted 30 November 2007

This article by Gabrielle Strobel provides an excellent review of recent research advances analyzing the nature and timing of calcium dysregulation in brain neurons of Alzheimer disease (AD) model mice, particularly highlighting the elegant imaging and electrophysiological studies of ryanodine receptor (RyRs) function by Grace Stutzmann and her colleagues. This work is clearly exciting and promising. However, it also seems important to view it in the context of dynamic age-dependent changes and potential interactions with other pathways in Ca2+ dysregulation. The effect of presenilin mutations on Ca2+ release from RyRs is likely to reflect only one stage of a complex cascade of abnormal Ca2+ signaling that, as the article noted, may begin well before hallmark pathology appears, perhaps during normal aging.

For example, early in the development of the Ca2+ hypothesis, we found evidence of increased Ca2+ signaling and voltage-gated Ca2+ influx in hippocampal neurons during normal aging in rats (Landfield and Pitler, 1984). This observation has been extended since by imaging...  Read more

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad