Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
San Diego: Oligomers Live Up to Bad Reputation, Part 1
This is Part 1 of a three-part story. See Parts 2 and 3. Download a .pdf of this news and commentary series.

16 November 2007. Over the past decade, researchers have shifted away from a literal interpretation of Alois Alzheimer’s groundbreaking discovery of plaques and tangles as the likely cause of Alzheimer disease. After years of argument—mostly in the 1990s—about whether plaques or tangles were the culprit, the answer appears to be, “Both and neither.” How can that be true? Scientists have recognized that both constituent proteins of those hallmark pathologies—the amyloid-β (Aβ) peptide and tau—play essential roles in the development of the disease, relegating the Baptist-Tauist divide solidly to the past. That’s the “both” part. But scientists also increasingly agree that the microscopically visible protein deposits are not the worst offenders: hence, the “neither.” Instead, they blame smaller, oligomeric forms of the Aβ peptide that they believe exist in a complex equilibrium with higher-order protofibrils along a path to aggregation. These, they say, damage synapses and interfere with cognitive function. In short, they say plaques are bad, but oligomers are worse. For tau, this story isn’t nearly as far along, but trends suggest that it may well develop along similar lines. (And ditto for α-synuclein.)

The Society for Neuroscience conference, held 3-7 November in San Diego, was a testament to how deeply the science of Aβ oligomers has taken hold in the field. There were some 35 presentations about Aβ species variably called oligomers, ADDLs, AβOs, or protofibrils. Speakers increasingly cited the “Amyloid Oligomer Hypothesis” rather than the “Amyloid Hypothesis” in the introductory slide of their talk. Indeed, a range of presentations from a diverse group of labs reported data largely concurrent with its essential tenet that AD begins with synaptic dysfunction caused by soluble Aβ species. Here are selected highlights.

Perhaps the most direct support came from Ganesh Shankar, an M.D.-Ph.D. student working with a team of colleagues in Dennis Selkoe’s laboratory and Cindy Lemere at Brigham and Women’s Hospital, Boston, Dominic Walsh’s group and Ciaran Regan’s group, both at University College in Dublin, Ireland, and with Bernardo Sabatini at Harvard Medical School. In a sparsely attended slide session on the last afternoon of the conference, Shankar expanded on what a poster presented by Shaomin Li from the same team had foreshadowed days before. The scientists isolated soluble Aβ species from cortex of human AD brain, and report that oligomers as small as a dimer recapitulated the synaptotoxic effect the scientists had previously published for similar small oligomers secreted by cultured cells.

Prior studies from several laboratories have consistently found synaptotoxic effects for various forms on Aβ oligomers (e.g., Walsh et al., 2002—from conditioned media of 7PA2 Chinese hamster ovary cells; Lambert et al., 1998—from synthetic Aβ42; Lesne et al., 2006—from Tg2576 mouse brain). Yet these studies begged the question of how relevant to human Alzheimer disease all this can be until human Aβ oligomers are in hand. To address this question, Shankar and colleagues obtained postmortem cortical tissue from several patients with late-onset AD (one of whom had had no clinical AD but pathological AD upon autopsy). As controls, the scientists used cortex from patients with Lewy body dementia (LBD—they get parkinsonism and dementia at about the same time and are thought to have mixed pathologies), Down syndrome (who have typical AD-type amyloid pathology), and frontotemporal and multi-infarct dementia (who do not). Readily detectable soluble Aβ showed up in cortex from all clinically demented AD patients but not in one cognitively normal person who had the plaque pathology. It also showed up in the Down brain, and to a much smaller extent in the LBD brain. Curiously, soluble extracts from normal control brains appeared to contain very little or no soluble monomeric Aβ by this immunoprecipitation/Western blot assay, even though the brain presumably produces some all the time.

These AD cortical extracts were made merely in TBS buffer without detergent, and they showed primarily monomer at a weight of 4 kDa and dimer at 8 kDa. Extracts made in parallel with detergent also had monomer and dimer in them. Shankar showed experiments suggesting that besides the dimer, soluble Aβ extract from human AD brain also contains complexes having a larger molecular weight—either Aβ aggregated with itself or bound to other proteins—but that these fall apart upon treatment with detergent. This is a technical difference with studies on ADDLs and Aβ*56, both of which are reported to be SDS-stable. Shankar said that his colleagues and he searched for SDS-stable species in the human extracts but so far have been unable to find any that are larger than trimer. Shankar and colleagues used detection by two antibodies that detect the free N- and C-terminus of Aβ, respectively, and also used mass spectrometry, to ascertain that the dimers contained true Aβ, and to exclude any other Aβ-containing APP cleavage fragments that might be contained in the extracts.

Next, the scientists applied their preparations to tests of LTP and spine integrity that they had developed previously. The TBS extracts from AD brains blocked LTP induction, whereas extracts from the other diseases and age-matched controls did not, Shankar reported. (The Down’s extract was not tested.) Immunodepletion of Aβ restored LTP, meaning the effect was specific to Aβ. The effect was potent, acting in the picomolar range. By enriching Aβ through immunoprecipitation, eluting with SDS buffer and then running on size exclusion chromatography, only the fraction enriched for Aβ dimers inhibited LTP significantly; the monomer had no effect. The soluble AD brain extract also facilitated long-term depression, reducing neuronal excitability after a period of stimulation. The main point, Shankar said, is that Aβ dimer extracted from human AD brain is sufficient to disrupt the molecular basis of learning and memory. It is not the only form, but the smallest form that can be toxic.

Various anti-Aβ antibodies are in clinical trials at present, and one debate in the field revolves around which type of antibody might be most potent. Shankar and colleagues indirectly addressed this debate by testing which of the three classes of anti-Aβ antibody used in those trials—N-terminal, mid-region, C-terminal—was best able to rescue the detrimental effect on LTD of the human AD extract. In a subtraction experiment, where the investigators selectively depleted the extract with only one kind of antibody, N-terminal antibodies best protected LTP, Shankar reported. This electrophysiology result concurred with associated biochemistry, in that the N-terminal antibodies also captured the most Aβ from the extract. (Not all immunotherapy clinical trials, however, are based on the premise of directly counteracting Aβ oligomers in brain; some aim to draw down Aβ from the periphery, or target Aβ more generally.)

Beyond LTP and LTD, do these human oligomers really matter to the structure of synapses? There is strong consensus in the field that synapses in AD-relevant brain areas gradually decrease in number early on as people develop cognitive symptoms (Davies et al., 1987; Scheff et al., 2007). At Neuroscience, Shankar showed evidence that the human AD oligomers reduced the density of dendritic spines in cultured brain slices in much the same way as cell-secreted oligomers do (Shankar et al., 2007). Furthermore, Shankar showed data on a rat behavioral test. The human AD extract impaired learning in a passive avoidance paradigm. It did so when infused 3 hours after the rats had initially learned, the period that other studies have identified as the time when synapses undergo remodeling following learning.

Finally, the researchers reported taking a hard crack at the Aβ dimers. Acting on a hunch that the dimers might represent a seed for plaque formation, the team isolated mature, cored plaques and removed as many associated components from them as possible by repeated washes in detergent and TBS buffer. This left behind insoluble, microscopic cores that stained with Congo red. These cores did not inhibit LTP. They were very hardy, but when the scientists blasted them apart with highly concentrated formic acid, Aβ dimers were released, and those did inhibit LTP. Taken together, these investigators interpret their data to mean that soluble Aβ oligomers from typical AD patients, starting with dimers, disrupt synaptic function in humans, and that insoluble cores sequester these species. As to plaques, they represent a reservoir of soluble Aβ in a given brain region, Shankar said. For their part, the dimers would seem to be a relevant substrate for both research into the molecular pathways of synaptic impairment, and also for testing prospective therapeutic agents preclinically, Shankar added.

Other labs need to replicate these findings. When asked whether the recipe for isolating the human oligomers was technically difficult, he replied: “No, it’s pretty much standard biochemistry. But rigorous clinical and histopathological information on the patients should be available before attempting it, so close interaction with a brain bank is key.”—Gabrielle Strobel.

This is Part 1 of a three-part story. See Parts 2 and 3.

 
Comments on News and Primary Papers
  Comment by:  E T
Submitted 16 November 2007  |  Permalink Posted 18 November 2007

The work of Shankar and colleagues provides new evidence supporting the concept that soluble Aβ oligomers disrupt synaptic function in Alzheimer disease. The recent publication from Rowan, Wang, and their colleagues (Rowan et al., 2007) suggesting that synaptic dysfunction caused by Aβ oligomers is mediated by TNF-α is highly relevant. This new publication extends Rowan and Wang’s previous work, which suggested that β amyloid inhibition of LTP is mediated via TNF (Wang et al., 2005). In Rowan and Wang’s most recent paper, experimental evidence is presented that pretreatment with a biologic inhibitor of TNF-α to neutralize TNF-α prevented Aβ inhibition of LTP induction at medial perforant pathway synapses.

These are observations of great importance, because they help bridge the gap between the amyloid hypothesis and the neuroinflammatory hypothesis of AD. These interrelated mechanisms may help explain the positive clinical effects my colleagues and I have observed using anatomically targeted anti-TNF treatment in AD (Tobinick et al., 2006) and underscores the need to further...  Read more


  Comment by:  Lars Lannfelt, ARF Advisor
Submitted 20 November 2007  |  Permalink Posted 20 November 2007

Regarding the data presented by Dennis Selkoe's group: when they isolate the oligomeric material from AD brain, they separate it by a Sephadex75 column. The material goes with the void in that column (“fraction 4”), which means that it is larger than 65 kDa. Our synthetic protofibrils behave in the same way on the same column. Selkoe’s group then immunoprecipitate the material and run it on Western blot, where it appears as a dimer.

There are at least two explanations for the difference observed:

1. The dimer is broken down from a larger oligomeric species through immunoprecipitation and Western blot.

2. The dimer is bound to a larger protein which gives a molecular weight of more than 65 kDa.

[Editor's note: see Oligo report Part 2]

View all comments by Lars Lannfelt


  Comment by:  Sylvain Lesne
Submitted 26 November 2007  |  Permalink Posted 26 November 2007

I would like to further detail some of the statements present in Dr. Pimplikar's comments regarding our studies using human brain tissues (20 Non-Cognitively Impaired, 10 Mild Cognitively Impaired and 10 AD selected from the Religious Order Study by Dr. David Bennett, director of the program).

It is true that during my Minisymposium talk, I reported a greater than 3-fold increase in Aβ*56 levels in brains of individuals clinically diagnosed with MCI or AD. Aβ*56 levels in both MCI and AD groups were not different compared to each other, suggesting that Aβ*56 may be a molecule initiating Aβ-induced cognitive decline. I also mentioned that we did not observe changes in levels of soluble monomeric Aβ, nor in levels of Aβ trimers. Finally, we reported that cerebral levels of Aβ*56 are inversely correlated with MMSE score, while soluble Aβ monomers, Aβ trimers, or amyloid burden were not associated with neurological status.

As for our poster presentation, we demonstrated that Aβ*56 was not associated with changes in levels of synaptophysin or drebrin (among other pre- and...  Read more


  Comment by:  Mary Jo LaDu
Submitted 26 November 2007  |  Permalink Posted 26 November 2007

At this moment, perhaps the greatest contribution to the field of AD would be focusing on efforts to further define and compare the various preparations of amyloid-β (Aβ) aggregates, continuing research in the vein of recent SfN presentations from the Ashe/Cleary and Selkoe groups. The nomenclature for oligomers is inconsistent at best. The Aβ assemblies/aggregates preparations studied by particular investigators are defined by numerous methods, including neurotoxic activities, isolation technique (primarily size exclusion chromatography), size estimation by SDS or native PAGE, and several imaging techniques. In addition, reactivity with various Aβ conformation-specific antibodies is now also being used to identify specific species of Aβ. Thus, comparison of results across different preparations of Aβ oligomers is virtually impossible. Establishing a common series of definitions and encouraging future publications to work within these established parameters would greatly advance the study of the relationship between Aβ structure and function.

View all comments by Mary Jo LaDu

  Comment by:  Sanjay W. Pimplikar
Submitted 26 November 2007  |  Permalink Posted 26 November 2007

Alzheimer Disease, Aβ Oligomers, and Shrek
Gabrielle Strobel and Alzforum should be congratulated on bringing to our attention the excitement the “amyloid oligomer hypothesis” has generated in the AD field. Her three-part presentation (Oligomers Live Up to Bad Reputation) summarizes the enormous amount of data presented at the meeting and leaves little doubt that “oligomer” is the buzzword of today.

That the three oligomeric forms of Aβ (7PA2 derived small oligomers; high “n”-oligomers termed ADDLs; and “star”-oligomers) exhibit deleterious effects at various concentrations, in various experimental paradigms, is not surprising, and perhaps, not significant. After all, the literature of the 1990s is littered with reports of Aβ monomers or fibrils being toxic to cells. What is important (to come out of the San Diego meeting) is that two studies found the presence of Aβ oligomers in the AD brains but not in the control tissues. Surely, this should silence the critics, right?

In oral and poster presentations, Lesne et al. reported increased levels of Aβ*56...  Read more


  Comment by:  Kiran Bhaskar, Karl Herrup, Bruce Lamb, Nicholas H. Varvel
Submitted 27 November 2007  |  Permalink Posted 27 November 2007

Our lab has begun looking at Aβ oligomers in our mouse model and in vitro. To add to this series, our findings presented at the SfN meeting can be summarized as follows:

1. We observe entry into the cell cycle (as evidenced by expression of cell cycle proteins and DNA replication by FISH) of selected neuronal populations in our APP YAC transgenic mouse model of AD at 6 months of age. This cell cycle entry is dependent upon amyloidogenic processing of APP and occurs about 6 months prior to Aβ deposition.

2. We can identify the presence of Aβ oligomers at this age (bands on SDS-PAGE) recognized by both 6E10 and the oligomer-specific antibodies NU1 and A11, including the presence of dimers and trimers as well as higher-MW Aβ species.

3. In-vitro preparations of oligomeric Aβ (prepared in Hams F12 media or purified via SEC) and, to a much lesser extent, monomeric Aβ, induced concentration-dependent aberrant neuronal cell cycle entry as measured by BrdU incorporation and expression of cell cycle proteins, in primary cortical neurons. Oligomeric Aβ also induced loss of...  Read more


  Comment by:  William Klein
Submitted 19 December 2007  |  Permalink Posted 19 December 2007

Editor’s note: The Alzforum editors invited Bill Klein of Northwestern University’s Cognitive Neurology and Alzheimer’s Disease Center in Evanston, Illinois, to round off this series of SfN conference news and commentary. Readers who came late to the story can kick back and use Klein’s perspective on the biology and structure of Aβ oligomers as their frame of reference for this current coverage. Below, Klein offers an informal overview of some milestones, along with his take on today’s central questions. If these remarks whet your appetite, you’ll find an in-depth discussion of the broader topic in Klein’s chapter in Synaptic Plasticity and the Mechanism of Alzheimer’s Disease, Selkoe, Dennis J.; Triller, Antoine; Christen, Yves (Eds.), due out January 2008 from Springer.

Oligomers as Alzheimer’s toxins.
Thanks to the work of many labs, we now know that soluble Aβ oligomers are long-lived, neurologically active molecules, not simply...  Read more


  Comment by:  Zoia Muresan, Virgil Muresan
Submitted 20 December 2007  |  Permalink Posted 20 December 2007

We have read with great interest all the recent reports and comments on the toxicity of Aβ oligomers. We would like to start our own comment with a citation from Dr. Klein’s recent comment on this topic:

“For all the oligomers—whether dimers, 12mers, or other pathogenic species still to be characterized—we’ll need to learn how they form, why they accumulate, how they target particular neurons,...”

Our lab has been interested in characterizing axonal transport in neurodegenerative diseases, in particular in Alzheimer disease (AD). We wanted to ask whether the Aβ deposition in AD might result from a deficient axonal transport, a question that Dr. Larry Goldstein’s lab—and other labs as well—are also trying to answer. Experimentally, this question is difficult to address in animal models of AD, due to the difficulty of identifying early modifications in individual neurons. To circumvent this problem, we have employed a cell culture system, where CAD cells (a mouse neuronal cell line derived from the locus coeruleus) [1] produce and accumulate within their processes large...  Read more

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad