Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Hot Stuff—PIB News From the Pacific Rim
22 October 2007. The Pittsburgh Compound-B (PIB) ligand is one of the most promising diagnostic tools for Alzheimer disease (AD). But even as PIB-based positron emission tomography (PET) in humans has blossomed around the globe, it has also been plagued by a downside. PIB-PET imaging has been unable to distinguish normal mouse brains from those laden with amyloid plaques—something researchers and drug developers would clearly like. In the October 10 Journal of Neuroscience, researchers led by Makoto Higuchi at the National Institute of Radiological Sciences, Chiba, Japan, report solving that dilemma. The researchers have generated a carbon 11 form of PIB with much higher radioactivity than has been achieved before. With this super hot PIB, they not only managed to image amyloid plaques in transgenic mice, but track amyloid reduction in response to anti-Aβ treatment as well. The study has drawn praise from Bill Klunk and Chet Mathis at the University of Pittsburgh, who developed PIB (see comment below).

Klunk and colleagues had suggested that the inability to detect mouse plaques with PIB is due to a dearth of high-affinity PIB binding sites in mouse amyloid (Klunk et al., 2005; see ARF related news story). One potential solution to that, Klunk told ARF via e-mail, is to use PIB with higher specific radioactivity. The hotter the molecule, the fewer of them are needed to get the same radioactivity, and fewer molecules means less background and better sensitivity. This is just the approach taken by the Japanese researchers. First author Jun Maeda and colleagues synthesized C-11 PIB that is around an order of magnitude hotter than that used in previous studies of transgenic mice.

Using the hotter tracer, Maeda and colleagues were able to detect amyloid plaques in APP23 mice by PET. In keeping with the known pathology in this model, they found that the PIB signal was detectable by 17 months, and grew more intense as the animals aged (up to 29 months). They also were able to use PIB to monitor a passive immunization protocol. One and 2 weeks after injecting anti-Aβ antibodies into one side of the animals’ hippocampi, the researchers detected a decrease in PIB retention in the same side. They also detected a concomitant increase in signal from a PET ligand, [18F]-FE-DAA1106, that binds to the peripheral benzodiazepine receptor, a marker of glial cell activation. Wild-type mice retained little [18F]-FE-DAA1106 after passive immunization, suggesting the glial response was due to the presence of amyloid.

The difficulty in using PIB in mice suggests that there may be something qualitatively different about mouse and human amyloid deposits, but what? That’s a key question, according to Klunk. “Per unit volume, mice have as many or more plaques than human AD, and per mg brain, Tg mice have 10-20 times more insoluble Aβ than in human AD brain. But, each mole of that mouse Aβ only contains 1/500th the number of PiB binding sites,” Klunk wrote to ARF. To find out what that qualitative difference between human and mouse amyloid might be, Maeda and colleagues measured PIB binding to a variety of Aβ subtypes. They found that, in both human and mouse brain, PIB retention correlated with levels of an N-terminal, pyroglutamate derivative of Aβ (see ARF related news story) and that this AβN3-pyroglutamate had much higher affinity for PIB in vitro. Because the formation of AβN3-pyroglutamate is a slow enzymatic process, the researchers suggest that accelerated production of Aβ in transgenic mice does not promote development of “AD-like” plaques, which are enriched in the pyroglutamate derivative.

The Pacific Rim has produced other recent advances on PIB. Researchers led by Christopher Rowe at the Centre for PET, Austin Health, Heidelberg, Australia, report in the October 10 Brain online that the ligand labels amyloid deposits in elderly people who, to all intents and purposes, appeared cognitively normal. On closer inspection, it turned out that those people have poor episodic memory. The finding supports the idea that amyloid deposition occurs long before any clinical signs of AD, but more importantly, perhaps, suggests that PIB binding portends full-blown AD.

First author Kerryn Pike and colleagues (including Klunk), measured PIB signals in 31 AD patients, 33 patients with mild cognitive impairment (MCI), and 32 healthy older adults (mean age 71.6 years, MMSE score 29.2 +/- 0.9). Not surprisingly, they found increased cortical PIB binding in 97 and 61 percent of AD and MCI patients, respectively. But they also found that 22 percent of the controls had increased PIB binding. Pike and colleagues found that those PIB-positive controls performed worse in a test of episodic memory than PIB-negative controls. They also found a correlation between episodic memory and PIB binding. This correlation was much stronger in the MCI and control groups.

Because memory loss is one of the earliest and most predictive changes associated with AD, the authors suggest that Aβ gets deposited early in the pathological process. This is compatible with postmortem data showing that people who reported memory complaints but were clinically non-AD had some AD pathology on autopsy (see ARF related news story).

Last but not least, another Australian team, this one by Victor Villemagne at the University of Melbourne, report in the September 26 Journal of Neuroscience that though PIB does bind α-synuclein fibrils, PIB-PET signals in dementia with Lewy bodies (DLB) are due almost entirely to amyloid plaques. The finding could have diagnostic ramifications.

First author Michelle Fodero-Tavoletti and colleagues compared binding of tritiated PIB with synthetic α-synuclein fibrils and synthetic Aβ fibrils. They found that both fibrils had high- and low-affinity binding sites for PIB, but the high-affinity Aβ site bound more than 10 times tighter to the ligand than α-synuclein’s high-affinity site. Next, the researchers measured PIB binding in amyloid-positive and amyloid-negative tissue taken postmortem from DLB patients. They found that while PIB bound tightly to the amyloid-positive tissue, it failed to bind to amyloid-negative samples.

The finding indicates that PIB can be used to detect purely Aβ amyloid, and that signals will not be complicated by contributions from α-synuclein or tau aggregates (previous work showed that PIB does not significantly bind to neurofibrillary tangles, see Klunk et al., 2003). Of course, the downside, as the authors point out, is that because of the overlapping pathology between DLB and AD, PIB will be incapable of differentiating between the two without additional clinical diagnosis.—Tom Fagan.

Reference:
Maeda J, Ji B, Irie T, Tomiyama T, Maruyama M, Okauchi T, Staufenbiel M, Iwata N, Ono M, Saido TC, Suzuki K, Mori H, Higuchi M, Suhara T. Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. J. Neurosci. 2007 Oct 10; 27:10957-10968. Abstract

Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, Maruff P, Mathis CA, Klunk WE, Masters CL, Rowe CC. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 2007 Oct 10; advanced access. Abstract

Fodero-Tavoletti MT, Smith DP, McLean CA, Adlard PA, Barnham KJ, Foster LE, Leone L, Perez K, Cortes M, Culvenor JG, Li Q-X, Laughton KM, Rowe CC, Masters CL, Cappai R, Villemagne VL. In vitro characterization of Pittsburgh compound-B binding to Lewy bodies. J Neurosci. 2007, Sep 26;27:10365-10371. Abstract

 
Comments on News and Primary Papers
  Primary Papers: In vitro characterization of Pittsburgh compound-B binding to Lewy bodies.

Comment by:  George Perry, ARF Advisor (Disclosure)
Submitted 15 October 2007  |  Permalink Posted 16 October 2007
  I recommend this paper

  Primary Papers: Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer's disease enabled by positron emission tomography.

Comment by:  William Klunk, ARF Advisor (Disclosure), Chester Mathis (Disclosure)
Submitted 22 October 2007  |  Permalink Posted 22 October 2007

Most scientists have had the experience of reading a manuscript and thinking, “Wow! I wish I had written that.” The paper by Maeda et al. contains three separate studies, all of which generated that response in me. It is, in my mind, the most impressive study of amyloid imaging agents in animals yet published.

The first part of the study by Maeda et al. involves the vexing transgenic (Tg) mouse problem reported by our lab (Klunk et al., 2005) and that of Toyama et al. (Toyama et al., 2005). The problem lies in the fact that although the amyloid imaging agent, Pittsburgh Compound-B (PiB), shows high signal-to-noise in human brain areas known to contain high loads of amyloid-β (Aβ) plaques, almost no such signal could be detected in microPET studies using transgenic (Tg) mouse models of amyloid deposition at an age when the Aβ plaque load in these mice is several-fold higher than anything seen in human brain. We had suggested that this was based on the fact that, like synthetic Aβ aggregated in vitro, Tg mouse brain contained 1/500th the number of PiB binding sites per mole of...  Read more


  Primary Papers: Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease.

Comment by:  Paul Coleman, ARF Advisor
Submitted 19 October 2007  |  Permalink Posted 22 October 2007
  I recommend this paper

This paper raises the interesting question of the relationship between PIB PET and the Aβ oligomers that have been shown to affect synapses and behavior.

View all comments by Paul Coleman

  Primary Papers: Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease.

Comment by:  Anne Fagan, ARF Advisor
Submitted 23 October 2007  |  Permalink Posted 23 October 2007
  I recommend this paper

  Primary Papers: Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer's disease enabled by positron emission tomography.

Comment by:  Anne Fagan, ARF Advisor
Submitted 23 October 2007  |  Permalink Posted 23 October 2007
  I recommend this paper

  Primary Papers: Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer's disease enabled by positron emission tomography.

Comment by:  Thomas Bayer
Submitted 23 October 2007  |  Permalink Posted 23 October 2007

This report provides first evidence for a direct correlation of PiB (Pittsburgh Compound-B) retention analyzed by PET imaging in living APP transgenic mice. This is a very important paper, because it describes the temporal and spatial distribution of plaque deposition after intravenous injection of PiB, a compound applied in Alzheimer disease (AD) patients. The authors were able to show that passive immunization against human Aβ peptide reduced PiB retention, correlating well with an increase in glia radiotracer signaling. It is at present, however, unclear, whether the observed increase in gliosis is directly involved in Aβ phagocytosis and clearance. In any case, the passive immunization clearly shows that it has an effect on PiB retention and amyloidosis in vivo. Of special interest, the PiB binding best correlated with plaques positive for N-terminally truncated and modified Aβ, Aβ-N3-pyroglutamate (AβN3[pE]) in AD brain and three different APP transgenic mouse models.

The existence of N-terminal truncated or “ragged” variants of Aβ has been known for some time (see,...  Read more


  Primary Papers: Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease.

Comment by:  Alexander Drzezga
Submitted 24 October 2007  |  Permalink Posted 24 October 2007

This is a highly interesting study on specific binding behavior of 6-OH-BTA-1, aka Pittsburgh compound B (PIB). Modern molecular imaging tracers such as PIB open the possibility to characterize neurodegenerative disorders on the basis of underlying pathology rather than on clinical symptoms alone. Labeled with the positron emitter C-11, PIB has been recently established as a most successful tracer for positron emission tomography (PET) imaging of cerebral β amlyoid pathology, in particular amyloid plaques in vivo. Amyloid plaques are considered a hallmark pathology in Alzheimer disease and, correspondingly, in a number of studies significantly higher cerebral binding of [11C]PIB has been demonstrated in the brain of AD patients, compared to healthy controls (1-3).

Apart from amyloid plaques, many different types of pathologic protein aggregations in the brain have been associated with neurodegenerative disorders. Thus, to be valuable for scientific and clinical application, a tracer detecting cerebral molecular pathology should be as specific as possible. For example, in AD,...  Read more


  Comment by:  Fred Van Leuven (Disclosure)
Submitted 30 October 2007  |  Permalink Posted 30 October 2007

Besides the interesting issues already discussed at length and in depth, the data bring to mind the problem of why N-terminally directed antibodies—and particularly those against the EFRH epitope as demonstrated by Beka Solomon and coworkers—are most efficient in passive vaccination. The explanation is that the N-terminal is "dangling" outside the amyloid fibers and thereby accessible.

Then I wonder about antibodies that react about two orders of magnitude less well with pE-Aβ (i.e., Aβ3-42 peptide, starting with pyroglutamyl at residue Glu-3), than with wt-Aβ (Gardberg et al., 2007). Are these acting not or less well on pE-Aβ in human brain and thereby explaining differences in efficacy of passive vaccination in mouse models and human patients?

References:
Gardberg AS, Dice LT, Ou S, Rich RL, Helmbrecht E, Ko J, Wetzel R, Myszka DG, Patterson PH, Dealwis C. Molecular basis for passive immunotherapy of Alzheimer's disease. Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15659-64. Abstract

View all comments by Fred Van Leuven


  Primary Papers: Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer's disease enabled by positron emission tomography.

Comment by:  Victor L. Villemagne
Submitted 31 October 2007  |  Permalink Posted 31 October 2007

The elegant report by Maeda and colleagues [1] shows that in vivo amyloid imaging with 11C-PIB in transgenic (Tg) mice is possible. After the initial in vivo studies with multiphoton microscopy showing binding of PIB to plaques in Tg mice [2], it was reported that 11C-PIB did not significantly bind to aggregated Aβ in Tg mice [3].

The key to this groundbreaking report is the ability to inject mice with very high specific activity (SA) 11C-PIB. As Bill Klunk points out, what seems critical is not the amount of Aβ or the number of plaques but rather the amount of available binding sites, and their relative affinity, reflected in image contrast and the amount of non-specific binding. The 11C-PIB SA reported by Maeda were in excess of 7.9 Ci/μmol (or 5.4 Ci/μmol at the time of injection), much higher than the ones reported by Toyama (1.1-3.2 Ci/μmol) [3], or Klunk (>1 Ci/μmol) [4]. Not too many PET centers can achieve such high SA. To our knowledge, the only other group that has been able to show quantifiable images of 11C-PIB in Tg mice is the group led by Alexander Drzezga in...  Read more

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad