Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Double Paper Alert—A Function for BACE, a Basis for Amyloid
22 September 2006. This week, details of findings Alzforum previously reported from meetings in St. Moritz, Switzerland, and Madrid, Spain, are published. In yesterday’s Sciencexpress online, Christian Haass, University of Munich, Germany, and colleagues in Europe and the U.S. reported on the physiological role for the β-secretase BACE1. In today’s Science, Mathias Jucker, University of Tubingen, Germany, also with European and U.S.-based collaborators, describes how formation of β-amyloid may be seeded by exogenous Aβ. While there is no indication that Aβ can be infectious, this work emphasizes the similarities between prion amyloids and those caused by non-infectious proteins.

Finding a physiological role for BACE1 has been on the front burner since BACE knockout mice were found to have variable and sometimes subtle phenotypes. When Haass’ group found that BACE expression was elevated in 2-week-old mouse pups but almost nonexistent in adult mice, they started to search for a developmental role for the secretase. That led to the discovery that BACE is intimately involved in the myelination of peripheral motoneurons. They found that absence of BACE leads to the accumulation of neuregulin 1 (NRG1), a BACE substrate and activator of ErbB receptors on myelinating Schwann cells. In the BACE-negative mice, peripheral motoneuron axons are hypomyelinated, despite a normal myelin ultrastructure. Whether BACE cleavage of NRG1 is critical in CNS myelination events is unclear, but first author Michael Willem and colleagues report that in BACE-/- mice, unprocessed NRG1 also accumulates in the brain. See earlier ARF meeting report for more in-depth coverage.

BACE is also responsible for the first of two proteolytic cleavages that release amyloid-β (Aβ) from its precursor protein. Once free in solution, Aβ can go on to form dimers, oligomers, protofibrils, and eventually amyloid plaques. How and why this process progresses faster in some brains is unclear, but the process can be “seeded,” much like a tiny crystal can nucleate the growth of a larger one from a solution. But as Matthias Jucker and colleagues report, the type of Aβ “crystals” that form depends very much on the nature of the seed and the material seeded.

First author Melanie Meyer-Luehmann and colleagues report that extracts from postmortem AD brains or old transgenic APP23 or APP/PS1 mice can seed Aβ deposition in mice that would not normally show signs of Aβ accumulation until they were older. But the nature of the deposits depends on the host/donor relationship. Extracts from APP/PS1 transgenic mice produce coarse, punctate Aβ deposits in APP23 hosts, whereas APP23 extracts yielded more diffuse deposits (quantitatively, the induction of deposits was similar in each case). The phenotypes seem to be based on the relative amounts of Aβ1-40 and Aβ1-42 produced in the donors and hosts, supporting the idea of different “strains” of Aβ, akin to the different prion protein strains that have been described. For more on this story, see our original meeting report.—Tom Fagan.

References:
Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, DeStrooper B, Saftig P, Birchmeier C, Haass C. Control of peripheral nerve myelination and the beta-secretase BACE1. Science Express. 21 September, 2006. Abstract

Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret J-M, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science. 22 September, 2006;313:1781-1784. Abstract

 
Comments on News and Primary Papers
  Comment by:  John Trojanowski, ARF Advisor
Submitted 23 September 2006  |  Permalink Posted 27 September 2006

The studies by Meyer-Luehman et al. extend insights into the in vivo formation of amyloid deposits by amyloid "seeds" that may be hetero- and/or homo-amyloidogenic inducers of amyloid fibrillization. This is significant because these types of studies will lead to the clarification of the perplexing conundrum of why there is a frequent co-occurrence of multiple different types of amyloids in neurodegenerative disorders characterized by brain amyloidosis. Indeed, double and triple neurodegenerative brain amyloidoses appear to far exceed in incidence and prevalence any neurodegenerative brain amyloidosis linked to a single amyloidogenic protein or peptide, and this enigma demands clarification if we are to develop more effective therapies for these disorders.

For example, with respect to Aβ deposits, these may occur by themselves as pathological signatures of single brain amyloidoses, such as cerebral amyloid angiopathy (CAA), which most commonly manifests clinically as stroke. This notwithstanding, CAA is more commonly an incidental finding in neurologically normal...  Read more


  Primary Papers: Control of peripheral nerve myelination by the beta-secretase BACE1.

Comment by:  Andre Delacourte
Submitted 29 September 2006  |  Permalink Posted 30 September 2006
  I recommend this paper

  Primary Papers: Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host.

Comment by:  Andre Delacourte, ARF Advisor
Submitted 29 September 2006  |  Permalink Posted 30 September 2006
  I recommend this paper

  Primary Papers: Control of peripheral nerve myelination by the beta-secretase BACE1.

Comment by:  Andrew Singleton, ARF Advisor
Submitted 2 October 2006  |  Permalink Posted 3 October 2006
  I recommend this paper

  Comment by:  Huaibin Cai
Submitted 5 October 2006  |  Permalink Posted 5 October 2006

BACE1 is the principal β-secretase for generation of amyloid-β peptides. Since the identification of BACE1, several lines of BACE1 knockout mice have been made, which are viable and show no major behavioral and pathological abnormalities, suggesting that BACE1 is a safe therapeutic target for Alzheimer disease (AD). Notably, some BACE1 KO mice show premature lethality and subtle alterations in emotional response and locomotor activities. BACE1 KO neurons also display subtle changes in synaptic plasticity and sodium conductance. These deficits are not noted in all the reported mice, but similar discrepancies in behavioral phenotyping have been noticed in mice derived from different strain backgrounds and gene targeting vectors.

Willem and colleagues are the first to show a convincing neuropathological abnormality in BACE1 KO mice. An observation that the highest expression of BACE1 protein correlates with the onset of peripheral nerve myelination promotes them to examine the progression of myelination in the sciatic nerve of BACE1 KO mice. They find that axons of BACE1 KO mice...  Read more


  Comment by:  Henry Querfurth, Kenneth Rosen
Submitted 21 February 2007  |  Permalink Posted 21 February 2007

It’s a Wrap; Axonal Myelination Is Regulated by the Alzheimer Disease Target, BACE
A fundamental developmental process has once again crossed paths with a major player in the pathogenesis of Alzheimer disease. Shortly after its discovery, BACE, via its interaction with neuregulin-1, has been implicated in the molecular neurobiology of central and peripheral axon myelination. Data from several labs have shown that specific members of the neuregulin-1 (NRG1) family of trophic factors are critical to Schwann cell differentiation, proliferation, survival, and now to the process of myelination itself. Whether axons are myelinated singly (and the number of myelin wraps required) or left unmyelinated and ensheathed in bundles, is governed by expression of the type III isoform of neuregulin-1 (Michailov et al., 2004; Taveggia et al., 2005; Chen et al., 2006; Ogata et al., 2004): It is the...  Read more
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad