Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Pinning the Tail on the Precursor—Proline Isomerization and Aβ
24 March 2006. In yesterday’s Nature, Kun Ping Lu at Beth Israel Deaconess Medical Center, Boston, together with colleagues in the U.S., Taiwan, and China, reports that isomerization of a proline in the C-terminal end of amyloid-β precursor protein (AβPP) reduces production of amyloid-β (Aβ). The conformational change is catalyzed by the prolyl isomerase Pin1, which may also prevent neurofibrillary tangles by isomerizing a proline residue in the microtubule binding protein tau (see ARF related news story). The actions of Pin1 on both AβPP and tau suggest that the prolyl isomerase might play a central role in AD pathology.

Proline, the sole α-imino acid in nature’s protein repertoire, is the only peptide residue that can flip-flop between two isomeric conformations, cis and trans. Such isomerizations have a profound effect on the shape of the protein backbone and in the late 1990s were predicted to be the basis for Pin1’s essential role in mitosis. Pin1 has since been linked to isomerization of a number of different proteins, including tau; transcription factors c-jun, NF-κB, and β-catenin; and the cell cycle protein cyclin D1. It has also been shown to bind to a plethora of other proteins, including, most recently, the neuronal harbinger of death BIM(EL), which triggers apoptosis. Whether Pin1 actually catalyzes proline isomerization in these binding partners remains to be determined.

In fact, proving that Pin1 causes proline isomerization has been a technical nightmare. Though miniscule amounts of the enzyme can elicit conformational changes in proteins such as Cdc25 (see Stukenberg and Kirschner, 2001), no one has conclusively demonstrated that these are caused by a cis/trans isomerization. But in collaboration with NMR spectroscopist Linda Nicholson at Cornell University, Lu and colleagues have now been able to visualize that flip-flop in full-length AβPP. Using ROESY (rotational frame Overhauser effect spectroscopy) NMR, they demonstrate the presence of both cis and trans isomers of proline 669, and transitions between the two isomers catalyzed by small amounts of Pin1.

Test tube experiments are one thing, but does this isomerization have physiological significance? Last year, Japanese researchers led by Takafumi Uchida at Tohoku University, showed that Pin1 binds to a threonine 668-proline 669 fragment in C99, the truncated form of AβPP that results from β-secretase cleavage of the full-length protein (see Akiyama et al., 2005). This was no surprise given that phosphorylated serine/threonine-proline is a well-known binding motif for the isomerase. Now, joint first authors Lucia Pastorino, Anyang Sun, Pei-Jung Lu, and their colleagues report that the isomerase also binds to full-length AβPP. They also tested how Pin1 affects processing of the full-length precursor protein in cell culture and in mice expressing the human AβPP carrying the Swedish double mutation (Tg2576).

The authors found that in Chinese hamster ovary (CHO) and H4 neuroglioma cells, AβPP and Pin1 colocalize and coimmunoprecipitate. They also found that overexpression of Pin1 reduces the amount of Aβ secreted from the CHO cells. In contrast, when the authors knocked out Pin1 in a breast cancer cell line, the cells produced about threefold less sAPPα, the soluble N-terminal fragment released by α-secretase. Taken together, the data seems to suggest that Pin1 reduces formation of Aβ by increasing the non-amyloidogenic processing of AβPP mediated by α-secretase.

In contrast, Uchida’s group had found that Pin1 increased production of Aβ from C99 when both were expressed in murine embryonic fibroblasts. Because C99 is poorly cleaved by α-secretase, this experiment might miss any effect Pin1 exerts on α-secretase-mediated AβPP processing. Nevertheless, the different effects seen on full-length versus β-secretase cleaved precursor suggest that the role of Pin1 in AβPP processing may be complex.

Pastorino and colleagues used Pin1-/- mice generated by Uchida’s lab to examine the relationship between the isomerase and AβPP processing in vivo. The Japanese group had found that soluble and insoluble Aβ40/42 were lower in Pin1-negative mice than in wild-type, though they did not report at what age they tested the animals. Now, Pastorino and colleagues report that while young (i.e., 2-6 months old), Pin1-negative mice had about the same amount of Aβ in the brain as wild-type littermates; in older animals (15 months), the absence of the isomerase caused about a 30 percent increase in the amount of insoluble Aβ42 (levels of soluble Aβ and insoluble Aβ40 stayed normal). It should be noted that this increase is relatively mild compared to some mouse models of AD. Tg2576 animals, for example, produce over 10-fold more Aβ42 than do wild-type mice and have abundant Aβ plaques. Tg2576 and other animal models also have well-documented learning and memory problems, so it will be interesting to see how the Pin1-/- animals fare in behavioral studies, too.

To test if the mild increase in insoluble Aβ in the Pin1-negative mice is due to some nonspecific, age-related phenomenon, the authors examined what happens to Tg2576 mice when Pin1 is absent. They found that by 6 months, Tg2576/Pin1-/- mice produced about 50 percent more insoluble Aβ42 than did age-matched transgenic littermates, suggesting that Pin1 may have a direct effect on Aβ production in vivo.

How could isomerization of proline 669 in the C-terminal, intracellular end of AβPP affect processing by α- and/or β-secretase on the extracellular side of the membrane or even by γ-secretase in the transmembrane domain? “That’s a very interesting question. We don’t know for sure, but we think it may be related to proteins that control trafficking of AβPP by binding to its C-terminal end,” said Lu.

Fe65, for example, which suppresses Aβ production, cannot bind to AβPP if threonine 668 is phosphorylated (see Ando et al., 2001), but dephosphorylation at that position requires that proline 669 be in the trans form. The natural, albeit slow, isomerization of the proline residue would forever protect a small portion of the total AβPP from dephosphorylation at threonine 668, increasing the chances for β- and subsequent γ-cleavage. “We believe that the role of Pin1 is to reset any cis-proline 669 to trans, so that the threonine can be dephosphorylated,” suggested Lu

This theory fits in with other observations. Li-Huei Tsai’s group at Harvard University has shown that phosphorylation of threonine 668 leads to increased production of Aβ in cell lines and that more of the phosphorylated form of the amino acid is found in tissue samples from AD brain (see Lee et al., 2003). Perhaps the big question is: How does threonine 668 get phosphorylated to begin with? It turns out that more of the amino acid is bound to phosphate in mitotic cells. This is curious, given Pin1’s role in mitosis and in light of a hypothesis suggesting that foiled attempts at cell cycle re-entry may be a trigger for neurodegeneration (see related ARF related Live Discussion). Stress may also lead to phosphorylation of threonine 668, suggested Lu.

The actions of Pin1 are likely to be multifaceted. It seems to function in the proliferation of breast cancer cells, and apoptosis mediated by mitochondria (see Becker and Bonni, 2006), yet without it, neurons are prone to neurodegeneration. As with most research, knowledge of Pin1 will benefit from distribution of the Pin1-/- mice and further exploration by other labs in the field.—Tom Fagan.

Reference:
Pastorino L, Sun A, Lu P-J, Zhou XZ, Balastik M, Finn G, Wulf G, Lim J, Li S-H, Li X, Xia W, Nicholson LK, Lu KP. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production. Nature. March 23, 2006;440:528-534. Abstract

 
Comments on News and Primary Papers
  Comment by:  Allan Butterfield
Submitted 24 March 2006  |  Permalink Posted 24 March 2006

This paper elegantly demonstrates that the peptidyl prolyl isomerase Pin1 regulates amyloid-β production via binding to Thr668Pro of amyloid precursor protein (APP). Pin 1 binds to phosphorylated Ser/Thr-Pro motifs in proteins to regulate numerous functions via conversion of prolyl residues from cis to trans conformation and vice versa (Butterfield et al., 2006, submitted). For example, by regulating the conformation of key prolyl residues in the protein phosphatase, PP2A, Pin1 regulates, in part, the dephosphorylation of tau.

Recently, our laboratory showed by redox proteomics that Pin1 was selectively oxidatively modified and dysfunctional in brain from subjects with Alzheimer disease and amnestic mild cognitive impairment, or MCI (Sultana et al., 2005; Butterfield et al., 2006). We also showed that purified Pin1, when subjected to oxidative damage, became dysfunctional, suggesting that in AD and MCI brain it is the oxidative modification of Pin1 that may lead to its loss of function. Lu and coworkers demonstrate that Pin1 knockout mice have greater deposition of Aβ42 in...  Read more


  Comment by:  Samuel Gandy, Koichi Iijima, Kanae Iijima-Ando, Tadashi Nakaya, Toshiharu Suzuki
Submitted 24 March 2006  |  Permalink Posted 24 March 2006

One lesion, two pathologies: Can Pin1 disturbance cause plaques and tangles?
Nearly 20 years have passed since the first efforts to link neurofibrillary pathology and amyloid pathology via dysfunction of some common regulatory step involving protein phosphorylation. At one time or another, PKC, ERK, GSK3, Cdk5, and protein phosphatases 1 and 2A have all been proposed to be players in the story. Among these, GSK3 and Cdk5 have been two of the most tantalizing, since each can act as both tau kinases and APP kinases. Pastorino and colleagues report in the current issue of Nature the discovery of a possible missing link in the form of prolyl isomerization by the isomerase Pin 1.

Part of the consensus sequence for GSK3/Cdk5 phosphorylation of Thr668 in the APP cytoplasmic tail is the presence of a prolyl residue at position 669. Pastorino et al. propose that the phosphorylation state of Thr668 regulates the susceptibility of Pro669 to isomerization by Pin1 by a factor of 1,000-fold, and that the isomerization state of that proline is a key mechanism that controls...  Read more


  Primary Papers: The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production.

Comment by:  Julian Thorpe
Submitted 28 March 2006  |  Permalink Posted 28 March 2006

Kun Ping Lu’s group and his collaborators have been at the fore of elucidating Pin1’s cellular roles, including, since discovering that tau is a Pin1 target protein, its involvement in neurodegeneration. They accumulated data that depletion of Pin1 in HeLa cells causes apoptosis in HeLa cells, that patterns of AD pathology correlate with regions of lower Pin1 expression in normal human brain, that Pin1 knockout mice suffer neurodegeneration, and that Pin1 can ameliorate p-tau pathology. On the basis of that, they have suggested that a fuller elucidation of Pin1’s involvement in neurodegeneration (and cancer) might lead to new therapeutic strategies.

Our group has acquired data confirmatory of, and complementary to, that of Lu and his coworkers. We have observed Pin1 deficits in a range of frontotemporal dementias and in aging normal brain neurons and have suggested that this might be a susceptibility factor both in neurodegenerative disease (Thorpe et al., 2004) and in aging-related neurodegeneration (Hashemzadeh-Bonehi et al., 2006).

In this latest work, Lu and...  Read more


  Primary Papers: The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production.

Comment by:  W. Taylor Kimberly
Submitted 28 March 2006  |  Permalink Posted 28 March 2006

In this very interesting paper, Pastorino et al. demonstrate that Pin1 catalyzes the conformational change of the phosphorylated APP cytoplasmic tail. The Pin1-mediated shift in the Thr668-Pro motif from a cis to trans conformation results in selectivity towards α-secretase processing of APP. Overexpression of Pin1 decreases amyloid-β production by 30-40 percent and conversely, the knockout of Pin1 favors β-secretase processing and results in an increase of Aβ42 by 50 percent (which rivals the change seen in FAD mutations in the presenilins).

How does Pin1 alter Aβ production? It is interesting that a structural change in the intracellular tail of APP alters its extracellular (or endosomal) cleavage. One attractive mechanism by which Pin1 alters APP processing is by affecting APP’s cytoplasmic binding partners. There are several known binding partners of APP that interact with the TPEE motif including X11, Disabled, and Fe65. Of these candidate proteins, only Fe65 is shown to be sensitive to the phosphorylation state of Thr668 (Ando et al., 2001).

How would Pin1 affect...  Read more


  Primary Papers: The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production.

Comment by:  Donna McPhie
Submitted 4 April 2006  |  Permalink Posted 6 April 2006
  I recommend this paper

Pastorino and colleagues demonstrate an interesting direct role for Pin1 in APP processing both in vivo and in vitro. The tie-in to the differential regulation of the interaction based on cell cycle phase in dividing cells is also intriguing. It leads one to wonder whether Pin1 might also have a potential function to protect neurons that may be pushed to entering the cell cycle by disease processes. Another exciting area to be followed up in subsequent studies, which was also mentioned in an above comment, is how the Pin1 interaction and conformational change in the APP intracellular domain which results from it may influence interactions with other C-terminal binding proteins. The functional consequences of the potentially altered interactions on signaling pathways in neurons may yield interesting information on APP’s normal role(s) and how these role(s) may be disrupted by the disease.

View all comments by Donna McPhie
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad