Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Aβ Star is Born? Memory Loss in APP Mice Blamed on Oligomer
17 March 2006. In a clever bit of sleuthing, Karen Ashe and colleagues appear to have solved the case of the mysterious memory loss in young mice engineered to express a mutated form of the human amyloid precursor protein (APP). Mysterious because the mice display memory problems as early as 6 months of age, in the absence of any neuronal loss and long before amyloid deposits appear in their brains. From Ashe’s previous work, and work from other labs (see review by Walsh and Selkoe, 2004, and Barghorn et al., 2005), all signs pointed toward a soluble oligomeric form of Aβ as the culprit, but no one knew exactly what that form might be in vivo.

Now, Ashe and colleagues at University of Minnesota in Minneapolis, along with collaborators from several other U.S. institutions, report the identification of a soluble, extracellular Aβ12-mer that appears responsible for erasing memory in their mice. The oligomer, which they call Aβ*56 (Aβstar56), appears in the brain precisely when memory impairment commences, and its levels in individual mice correlate with their performance in a test of recall. To prove that the oligomer caused memory loss, the researchers purified the species from mouse brain and showed that it could elicit transient memory impairment in rats when it was directly injected into their brains. The work, which Ashe first presented in a talk at last year’s Society for Neuroscience meeting (see ARF related news story), appears in this week’s Nature.

The results add to the growing understanding of the early toxicity that results from Aβ overproduction, independent of neuronal loss and amyloid plaque formation. The results suggest that, if a similar type of Aβ is found in humans with Alzheimer disease, it could serve as an early diagnostic marker, and a target for early interventions to treat, or even prevent, memory loss. Ultimate proof that Aβ*56 indeed causes the memory loss in humans will require that a drug be found that can reverse, or prevent, its effect.

To look for the causative agent of early cognitive changes in AD mice, Ashe took advantage of her Tg2576 mice. The mice, which carry a human APP transgene with the Swedish mutation, have a biphasic decline in memory with age. The first noticeable impairment shows up at 6 months, after which performance stabilizes for 6-9 months, and then undergoes a second decline. First author Sylvain Lesné led the effort to look for a specific Aβ species whose appearance coincided with the earliest stage of memory loss.

After developing a subcellular fractionation procedure to separately look at extracellular, intracellular, membrane-bound, and insoluble materials, the researchers used immunoblotting to detect Aβ. In particular, two multimeric forms of Aβ, a 40 kDa putative nonamer and a 56 kDa putative dodecamer appeared at 6 months, and then remained at steady levels thereafter. Monomers, trimers, and hexamers were also detected, but they appeared earlier, and thus seemed unlikely to be a primary cause of the memory problems.

The researchers capitalized on a natural variation among animals in the amounts of the different Aβ species to ask in another way which, if any, of these species were associated with memory impairment. To do this, they compared the performance of individual young mice in the Morris water maze with the levels of Aβ monomers, dimers, trimers, etc. The best correlation was seen with the 56 kDa species—as its level rose, memory function declined in 6-month-old mice. A weaker correlation was seen for the less abundant 40 kDa species, and no correlation was evident for monomers, trimers, or hexamers. Curiously, the 56 kDa species never increased any further in old mice, even as progressive memory loss occurred. The researchers speculate that perhaps other mechanisms take over later, when dystrophic neurites and other abnormalities begin to appear.

From these experiments, Lesné et al. concluded that the most likely candidate for causing memory loss was Aβ*56. To strengthen their hypothesis, they did a painstaking set of behavioral experiments in collaboration with Ming Teng Koh and Michela Gallagher at Johns Hopkins University in Baltimore. After purifying the Aβ*56 complex from brains of impaired mice, they administered it to young, healthy rats via a cannula into the lateral ventricle. Giving Aβ*56 two hours before the rats were tested in a Morris water maze had no effect on their training to find a hidden platform. But if the rats were dosed again 24 hours later and put into a pool with no platform, the treated animals showed no spatial memory; they swam randomly, whereas the vehicle-infused rats spent more time in the quadrant where the platform had been. These experiments indicated that Aβ*56 impaired long-term memory, but not the initial acquisition of spatial information. The effect of Aβ*56 on memory was reversible, since both groups performed equivalently 2 weeks later, when no Aβ*56 was given.

What exactly is Aβ*56? It was identified by immunoblotting with the anti-Aβ antibodies 6E10 and 4G8. Subsequently, the researchers showed it also reacted with the A11 antibody made by coauthors Charlie Glabe and Rakez Kayed at University of California, Irvine. This antibody only recognizes soluble Aβ oligomers larger than tetramers, not fibrillar forms (see ARF related news story). Non-denaturing size exclusion chromatography showed that the multimer was a native form, not an artifact generated by gel electrophoresis. The structure was urea-resistant, but did denature in the strong hydrogen-bonding solvent HFIP. Purified complexes contained Aβ as a major component when analyzed by mass spectrometry. The data all add up to a highly stable, hydrogen-bonded Aβ structure, most likely a tetramer of Aβ trimers. A recent study showed a similar dodecameric form of Aβ detected in Tg2576 mice was reduced by passive immunization (Ma et al., 2005).

The study raises many new questions, as Richard Morris, who invented the Morris water maze, and Lennart Mucke, who has pioneered research into cognitive effects of soluble Aβ species, point out in their accompanying News and Views piece. Is the Aβ*56 present in other mouse models of AD with memory deficits? Is Aβ*56 related to the oligomers detected in the CSF of AD patients? Will these or other Aβ assemblies turn out to be reliable biomarkers for early diagnosis, or targets for early intervention (see ARF related news story)? And last but not least, they write, how do they actually derange normal function?

Ashe is already on the hunt for answers to those questions, saying last fall that her lab is searching for the receptor for Aβ*56. She told National Public Radio that she has already determined that patients with AD have detectable amounts of Aβ*56, while people without AD do not (listen to the report). Now, Ashe and her colleagues are looking for traces of the offending complex even earlier in AD.—Pat McCaffrey.

References:
Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH. A specific amyloid-beta protein assembly in the brain impairs memory. Nature. 2006 Mar 16;440(7082):352-7. Abstract

Morris R, Mucke L. Alzheimer's disease: A needle from the haystack. Nature. 2006 Mar 16;440(7082):284-5. Abstract

 
Comments on News and Primary Papers
  Comment by:  Chris Exley
Submitted 21 March 2006  |  Permalink Posted 21 March 2006

The paper by Lesne et al. is interesting. It would be more convincing if it had included additional controls/information relating to the Aβ oligomer.

For example, do the authors have evidence for this oligomer from in-vitro preparations of Aβ42? If not, why not? If they do, is it ThT-reactive?

Could the authors present TEM evidence of the oligomer, either generated via the transgene or from in-vitro preparations?

If, as I have assumed, the oligomer is only formed in vivo, perhaps only in transgenes, and has not been identified in in-vitro preparations, then some speculation as to why this should be so would be pertinent. It is apparently quite stable, as the authors were able to isolate it for subsequent injection into rats.

In relation to the final experiments in which the isolated oligomer was injected into rat brains, a control consisting of "the vehicle" is surely not sufficient to demonstrate activity of this particular oligomer. We are all aware that injections of Aβ cause behavioral changes in the rat. The authors could have used a positive control, for...  Read more


  Comment by:  Paul Coleman, ARF Advisor
Submitted 21 March 2006  |  Permalink Posted 21 March 2006

Does this paper provide a new model of memory loss? No, but it advances our understanding of the basis of memory loss in a well-known transgenic mouse model of Alzheimer disease. Above all, the paper offers us a concrete biochemical entity to study and compare against other Aβ oligomer species that various groups have themselves found in recent years.

The paper fits nicely with prior studies that address the major question of what brain changes account for the deficits in memory and cognition in AD. Here is some historical context of this work: In the early 1990s, DeKosky and Scheff, 1990, as well as Robert Terry and Robert Katzman (Terry et al., 1991), showed that loss of synapses was the best correlate of the declines of memory and cognition in AD. Plaques did not correlate with memory and cognition, and tangles correlated slightly. But in these studies of the early 1990s, loss of synapses only accounted for about half the losses of memory and cognition in AD. Where might the...  Read more


  Primary Papers: A specific amyloid-beta protein assembly in the brain impairs memory.

Comment by:  Harry LeVine III
Submitted 21 March 2006  |  Permalink Posted 21 March 2006

This is an impressive and important contribution. It links the appearance of a particular multimeric species of the amyloid-β peptide—Aβ*56—to a specific behavioral perturbation, and induces the same perturbation in naïve rats by reintroducing the Aβ*56 species purified from Tg2576 brains. It begins to address the conundrum that Aβ levels, soluble or insoluble, do not correlate with the onset and severity of behavioral changes in these animals.

Expectedly, this report stimulates a raft of questions, not with the work itself, but in teasing out more of the details and in stimulating new approaches. It will also energize corroboration of their findings in other Tg mouse models, as well as a search for correlates in Alzheimer disease brain. The findings from those studies will either further validate the animal model or set limits on its interpretation, both of which will be valuable. To begin to understand this complex paper, you must also study the supplementary information...  Read more


  Comment by:  Dominic Walsh, ARF Advisor
Submitted 20 March 2006  |  Permalink Posted 21 March 2006
  I recommend the Primary Papers

This study is impressive both for the breadth and detail of the experiments undertaken. Using the well-characterized Tg2576 APP transgenic mouse line, the authors searched for the appearance of an Aβ species that coincided with the first observed changes in spatial memory. Starting at 6 months, the time when cognitive changes are first apparent, the authors detected Aβ species that migrated on SDS-PAGE as nonamers and dodecamers. Aβ monomer, trimer, and hexamer were seen at earlier time points and were therefore not considered to have a deleterious effect on cognition. Indeed, comparison of spatial memory and the levels of Aβ monomer, trimer, hexamer, nonamer, and dodecamer revealed that only nonamer and dodecamer levels correlated with memory impairment.

The authenticity of these various Aβ species as discrete assemblies was confirmed using a gel filtration paradigm previously employed to fractionate cell culture-derived low-n oligomers (Walsh et al., 2005), and was combined with immunoaffinity chromatography to achieve...  Read more


  Primary Papers: A specific amyloid-beta protein assembly in the brain impairs memory.

Comment by:  Lars Lannfelt, ARF Advisor, Lars Nilsson
Submitted 22 March 2006  |  Permalink Posted 22 March 2006

Amyloid-β protein dodecamer in the brain impairs memory in the Tg2576 mouse
The experience from genetic findings in the early 1990s strongly point to Aβ as the culprit in Alzheimer disease. However, we still do not understand how Aβ confers cognitive dysfunction and neuronal atrophy. Recent years have witnessed an increased interest in soluble Aβ oligomers as being the important pathogenic form of Aβ. This article is a significant contribution to the field. Most impressive is perhaps the author’s ability to isolate a soluble Aβ species from the brain and prove that it affects cognition. The research team, headed by Karen Ashe, has for a long time sought the elusive Aβ species responsible for cognitive decline in their transgenic mouse model Tg2576, which harbors the Swedish APP mutation.

Tg2576 lack neuropathology and are cognitively unimpaired until 6 months of age, when spatial memory declines but then remains stable for another 7-8 months. Animals aged more than 14 months develop neuropathology including neuritic plaques containing amyloid-β peptides and...  Read more


  Comment by:  Vincent Marchesi, ARF Advisor
Submitted 26 March 2006  |  Permalink Posted 27 March 2006

To their credit, the authors have attempted to look for early changes in the TG 2576 mouse model, which are more likely to deal with pathogenesis than pathogenic consequences. Lesne et al. have identified an unusual, high molecular-weight component in the brains of these mice that contains Abeta determinants and is only present before amyloid deposits accumulate. The claim that this material is necessarily all derived from extracellular spaces is questionable, since it was isolated from detergent-solubilized brain tissue. It is also not clear how much of the 56K band is made up of Abeta peptides. The authors describe an Abeta-derived peptide as representing the "core" of the material, but careful mass spec analysis should have revealed how much and what else was present in the sample. Until this is done, it is premature to declare this a special form of Abeta. I also agree that the biological activity of this material has not yet been studied adequately.

View all comments by Vincent Marchesi

  Primary Papers: A specific amyloid-beta protein assembly in the brain impairs memory.

Comment by:  Hyoung-gon Lee, Akihiko Nunomura, George Perry, ARF Advisor (Disclosure), Mark A. Smith (Disclosure), Xiongwei Zhu
Submitted 27 March 2006  |  Permalink Posted 27 March 2006

Star-struck by Amyloid
Lesne and colleagues show that Aβ*56 is found in cognitively impaired Tg2576 animals without Aβ plaques, but not in unimpaired animals, and that it correlates to early declines in memory but not later ones. Notably, when isolated and injected into rats, Aβ*56 leads to reversible cognitive deficits. This is an interesting study and will definitely appeal to supporters of the amyloid hypothesis. However, before we get ahead of ourselves, a few salient aspects bear remembrance.

First, different groups have reported that knockout of PS1 (i.e., no Aβ and probably no Aβ*56, either), while attenuating Aβ pathology in APP mutant transgenic mice, does not cure cognitive deficits (Dewachter et al., 2002; Saura et al., 2005). Therefore, cognitive deficits do not relate to Aβ (in any guise, even *). Second, mitochondrial, apoptotic, and oxidative events all precede frank Aβ deposition and are linked to cognitive decline in APP transgenic mice (Pratico et al., 2001; Reddy et al., 2004). Since oxidative stress leads to increases in Aβ (Yan et al., 1995;...  Read more


  Primary Papers: A specific amyloid-beta protein assembly in the brain impairs memory.

Comment by:  Gunnar K. Gouras
Submitted 3 April 2006  |  Permalink Posted 3 April 2006

This exciting paper set outs to define the site and conformation of Aβ in the brain that may be critical for cognitive dysfunction in Tg2576 mice. The co-occurrence of Aβ*56 with behavioral alterations is quite interesting, yet aspects of the study are surprising. Aβ* does not progressively increase, while Alzheimer disease and Tg2576 mice are characterized by progressive synaptic pathology. Aβ* appears at the onset of what seems to be a progressive decline in behavior in Tg2576 mice, were it not for transient improvement at 13 months, which surprisingly also occurs in wild-type mice.

The data used to support that Aβ* accumulates extracellularly in Tg2576 mice are challenging. As suggested in previous comments (LeVine; Marchesi), it would seem difficult to be certain that one is mainly looking at extracellular peptides after detergent treatment (0.01 percent NP-40; 0.1 percent SDS) and homogenization of the intricate mass of neurons and processes of brain by 10 passages through a 20-gauge needle. The authors did provide some data on other intracellular proteins not leaking...  Read more


  Comment by:  Sylvain Lesne
Submitted 20 April 2006  |  Permalink Posted 21 April 2006

I would just like to comment on the questions/remarks that followed our article. First and foremost, I would like to point out that we did not write in the article that Aβ*56 is an assembly composed of 12 units of Aβ. We did not include any hard data that would directly demonstrate this statement. What we did mention, however, is the possibility that Aβ*56 could represent a 12-mer because of the following observations: 1) Aβ trimers are formed intracellularly and are secreted by neurons in vivo and in vitro; 2) Aβ-immunoreactive species of high molecular weights (above 20 kDa) migrate at molecular weights that match theoretical migrations for 6-mer, 9-mer, and 12-mers of Aβ1-42. It remains to be determined whether these proteins/assemblies are only composed of Aβ, but we postulated so due to the fact that trimers are predominant in vitro and in vivo and only multiples of three monomers appear to form these Aβ-immunoreactive larger structures in vivo. Further analyses are underway to confirm our hypothesis.

View all comments by Sylvain Lesne

  Comment by:  Michael G. Agadjanyan
Submitted 20 June 2006  |  Permalink Posted 21 June 2006
  I recommend the Primary Papers

Normally, soluble Aβ molecule (39-43 amino acids) undergoes conformational changes in disease and is deposited in the brain as insoluble fibrils, oligomers and protofibrills. Previously it was demonstrated that Aβ neurotoxicity required insoluble fibril formation (mainly Aβ42 and to lesser degree Aβ40) (Lorenzo, 1994) and the fibrils served as inducers of neuronal apoptosis (Loo, 1993). Recently, emphasis has shifted to smaller soluble Aβ. Aβ42 dimers and trimers naturally secreted from a 7PA2 cell line were suggested to be responsible for the disruption of cognitive functions (Cleary, 2005). Importantly, intraventricular injection of such Aβ42 small oligomers inhibited long-term potentiation (LTP) in rat hippocampus and an anti-Aβ monoclonal antibody (6E10) that binds to N-terminal region of Aβ42 prevented this inhibition (Klyubin, 2005). It has also been demonstrated that passive immunization with...  Read more
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad