Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Amyloid-β—On or off the Wall?
4 August 2005. Problems with the amyloid hypothesis notwithstanding, knowing where amyloid-β (Aβ) plaques form might be key to developing strategies for clearing them from the brains of those with Alzheimer disease (AD). In this month’s American Journal of Pathology, two papers report that in three different mouse models of Alzheimer disease, plaques with dense cores, which have been associated with neuritic pathology and neuronal loss, are predominantly associated with blood vessel walls, and that this association can lead to vascular damage. The findings raise questions about just where plaque formation might occur most frequently during AD.

Christine van Broeckhoven and colleagues at the Flanders Interuniversity Institute for Biotechnology and the University of Antwerp in Belgium, together with collaborators in the US, carried out a detailed and systematic study of dense core plaques in the brains of both Tg2576 (see Hsiao et al., 1996) and PSAPP (see Duff et al., 1996 /pap/annotation.asp?powID=12907) mice. Both the former, expressing human Aβ precursor protein (AβPP) with the Swedish mutations (K670N and M671L), and the latter, a double transgenic expressing mutant human presenilin 1 (M146L) and AβPP with the Swedish mutations, generate generous quantities of plaques. Both sets of transgenic animals have been used as investigational models for AD.

First author Samir Kumar-Singh and colleagues found that the vast majority of dense core plaques are found adjacent to blood vessels. Using stereological microscopy of 4 μM thin slices, the authors found that of over 2,000 plaques sampled from the neocortices and hippocampuses, 94 and 85 percent of them were associated with blood vessels in Tg2576 (n = 9) and PSAPP (n = 5) mice, respectively.

To ensure that these numbers were not arrived at by chance, Kumar-Singh studied the entire brain of a 2-year-old Tg2576 and a 5-month-old PSAPP animal—at these ages the plaque burden in the different transgenics is about the same. The findings confirmed the data from the plaque sampling experiment. Ninety-five percent of 210 plaques from the Tg2576 animal and 85 percent of 258 plaques from the PSAPP mouse were positively associated with the microvasculature. Statistical analysis based on the size and area of the blood vessels and plaques also revealed that these associations could not be incidental. In fact, even in thinner (1 μM) sections from a PSAPP animal, the authors failed to identify even one plaque that did not associate with a vessel at some level. Moreover, the plaque/vessel relationship was further strengthened by the finding that plaques that had more than one dense core were more likely to be associated with more than one blood vessel. In fact, the total number of vessels associated with a plaque turned out to be the best predictor of how many cores might be present within it.

Tackling this question from a slightly different perspective, William van Nostrand and colleagues at Stony Brook University, New York, and the University of Nijmegen, Holland, report similar findings using the Tg-SwDI transgenic mice. These animals produce human AβPP with the same Swedish mutants as the Tg2576 mice, but mutations normally found in certain Dutch and Iowan populations (E693Q and D694N) are also included in the transgene for good measure. Previously, it was shown that the amyloid generated in these animals is predominantly vascular (see Davis et al., 2004). Now, first author Jianting Miao and colleagues show that the number of blood vessels that stained positive for Aβ increases dramatically as these animals age. In the thalamus and subiculum, areas where fibrillar Aβ accumulates—but not the frontal cortex where the amyloid is mostly diffuse—the percentage of vessels staining for Aβ reached 50 by 12 months and over 80 by 2 years of age.

When Miao and colleagues examined the brain ultrastructure, they found that the accumulation of microvascular amyloid was accompanied by anatomical changes. For example, the number of microvessels fell by 16 and 27 percent in the hippocampus of 1- and 2-year-old animals, respectively. Aβ in the meningeal vessels was also associated with apoptotic cells and loss of smooth muscle cells. Miao also found a dramatic age-related increase in the numbers of reactive astrocytes and microglia in the thalamus and subiculum. Both cell types were about five times more abundant in 2-year-old animals as compared to young, 6-month-old mice.

In fact, Kumar-Singh and colleagues also found obvious morphological changes in the Tg2576 and PSAPP mice. These included loss or thinning of the endothelium, basement membrane thickening or splitting to accommodate Aβ, and degeneration of smooth muscles. They also found that the transgenic animals had more microhemorrhages than did control mice.

How these findings relate to AD is unclear. The Dutch and Iowa mutations are known to cause primarily cerebral amyloid angiopathy, or CAA (see ARF related news story), and as Kumar-Singh and colleagues point out, their mouse data is more reminiscent of Flemish familial AD, characterized by many large, dense-core plaques and CAA, than it is of sporadic AD or Down syndrome, in which plaques are more diffuse and CAA minimal.

Nonetheless, these results would seem to cement the relationship between vessel walls and Aβ deposits. And as Kumar-Singh and colleagues write, “the present study, for the first time, demonstrates that dense amyloid plaques in Tg2576 and PSAPP mice are centered on vessel walls. If a similar mechanism is also operative in AD, therapeutics targeting Aβ clearance from the vascular compartment may be most beneficial.”—Tom Fagan.

References:
Kumar-Singh S, Pirici D, McGowan E, Serneels S, Ceuterick C, Hardy J, Duff K, Dickson D, Van Broeckhoven C. Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls. Am. J. Pathol. 2005;167:527-543. Abstract

Miao J, Xu F, Davis J, Otte-Holler, Verbeek MM, Van Nostrand WE. Cerebral Microvascular Amyloid {beta} Protein Deposition Induces Vascular Degeneration and Neuroinflammation in Transgenic Mice Expressing Human Vasculotropic Mutant Amyloid {beta} Precursor Protein. Am. J. Pathol. 2005;167:505-515. Abstract

 
Comments on News and Primary Papers
  Comment by:  Jacob Mack
Submitted 4 August 2005  |  Permalink Posted 8 August 2005

I believe the bystander effect is heavily implicated here and anyone familiar with comments on alzforum know that although autoimmunity and BBB leakage are important aspects in AD I still hold firmly to the belief that amyloid beta is an important catalyst (or cocatalyst) for immune response gone awry and for BBB leakage and TAU, CDK5 (amongst others) involved in intracellular hyperphosporylation.

View all comments by Jacob Mack

  Comment by:  Michael D'Andrea
Submitted 29 August 2005  |  Permalink Posted 29 August 2005

Two independent studies provided morphological evidence suggesting that accumulations of amyloid in mouse cerebral blood vessels are associated with amyloid plaques, which are typically detected in the CNS of AD patients. There is a wealth of evidence confirming vascular pathology in AD, and it was suggested years ago that amyloid plaques might originate from vessels.

The characterization of the different morphological types of amyloid plaques has been an important research focus in our laboratory. It is becoming increasingly clear that each distinct type of plaque may arise from separate mechanisms and that the concept that diffuse plaques gradually evolve into dense-core plaques or vice versa, may not be valid.

The Kumar paper suggested that all plaques are of vascular origin in the transgenic mouse brains; hence, in these models, there is no randomness to the distribution of the amyloid plaques. The Miao paper implied that diffuse and nonfibrillar amyloid in the cortex of the Tg-SwD1 mice remained diffuse and nonfibrillar, and that fibrillar amyloid in the thalamus...  Read more


  Comment by:  Samir Kumar-Singh
Submitted 5 September 2005  |  Permalink Posted 12 September 2005

Regarding Dr. D’Andrea’s remarks, we studied only ThS-positive “dense” plaques and not diffuse plaques, as also suggested by the title “Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer disease are centered on vessel walls.” Within the text, however, we mostly refrained from using the term dense-core plaques (calling them dense-plaques instead). That's because the plaques observed in the studied mouse models differ from the classical dense-core plaques observed in AD, especially those observed in the Flemish APP pathology where we had earlier shown their proximity to vessels (Kumar-Singh et al. Am J Pathol, 2002).

Secondly, as Dr. D’Andrea suggested, we indeed came across intracellular amyloid in nearby neurons and sometimes amyloid related to smooth muscle cells. However, the primary focus of our paper were dense, extracellular amyloid deposits. Similarly, our observation that “Ig occasionally stained neuronal surfaces” was there to support our observation that there are at least subtle BBB disturbances in these mouse models, as has also been observed in...  Read more

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad