Cindy Lemere, of Brigham and Women’s Hospital in Boston, has developed different new vaccines that do not evoke an Aβ-specific T cell response. She uses the Aβ1-15 peptide, either multiple copies attached to a lysine tree (the "dendrimeric" vaccine) or two copies connected by a lysine spacer and attached to an RGD motif to boost immunogenicity. An added appeal of her approach lies in the fact that she delivers her vaccines through the nose, raising the distant prospect of nose drops against AD.
Lemere’s team first described the performance of these new vaccines in wild-type mice at last year’s Society for Neuroscience conference in San Diego. In Sorrento, Lemere added data from tests in APP-transgenic mice. Both vaccines elicited a humoral immune response that was much stronger than that generated by prior vaccines using full-length Aβ. The antibodies labeled plaques and vascular amyloid in a TAPIR assay in AD tissue. When immunizing Lennart Mucke’s J20 APP-transgenic mice with the new vaccines for 6 months, Lemere found that the plasma levels of total Aβ shot up midway through the study and then came down toward the end. Plaque deposition decreased strongly, and cerebral Aβ levels dropped, as well. The mice exhibited no side effects. Lemere said that she hopes to test the vaccine in triple transgenic mice to look for effects on tau pathology, and then test it in monkeys (see also Lemere et al., 2004.)
Only the mouth can rival the nose as the simplest entry point into the human body. Dangle the prospect of a little white pill, and drug companies will listen with more interest to an academic’s budding experimental therapy than if it requires injection. Enter Takeshi Tabira’s from the National Institute of Longevity Sciences in Obu, Japan. Tabira described his group’s development of an oral vaccine that exploits the intestinal immune system’s ability to generate responses that follow a Th2 pattern.
The immune system in the gut is often overlooked as the dull, puny cousin of the more formidable system in the spleen and lymph nodes. However, it is quite extensive, spreading through the 300 square meters of intestinal mucosa an adult carries coiled up in the belly. To avoid peptide digestion in the stomach, Tabira’s group fashioned gene therapy vaccines out of Aβ1-43 and Aβ1-21 packaged into adeno-associated virus (AAV). This virus is used in experimental gene therapy regimens but comes with its own safety concerns. (Various gene therapy approaches are in preclinical development, but in the clinic all gene therapy remains problematic.)
Tabira said that antibodies against the Aβ peptides appeared in the lamina propria of the upper part of the small intestine of young Tg2576 mice treated with the vaccine. The mice developed mostly IgG antibodies, and their serum stained plaques from AD tissue in a TAPIR assay. The vaccine inhibited amyloid aggregation in vitro and reduced Aβ deposition and burden in vivo. It also appeared to reduce levels of phospho-tau. T lymphocytes from these mice did not react to full-length Aβ; the mice showed no evidence of inflammation save for microglial markers, Tabira reported. Older mice receiving the vaccine produced fewer antibodies, but also exhibited a reduction of their amyloid burden and inflammatory markers such as TGF-beta1 and certain cytokines.
Tabira noted that these effects followed a single oral dose and then persisted for weeks.
Anticipating safety concerns regarding the use of AAV, Tabira noted that the cells at the top of the intestinal mucosa turn over quickly. In mouse and rat, these dead cells exfoliate into the gut lumen and are excreted, whereas monkeys internalize the dead cells first and then degrade them. Tabira was unable to detect the AAV vector in other tissues of the mouse, but even so, this issue will require careful study before moving this approach into humans. The vaccine has entered testing in monkeys, Tabira noted.
Overall, the talks brought into focus these common themes and questions:
- Safer antigens seem to be effective in mice,
- questions around vascular amyloid and hemorrhages need attention,
- detecting reactivity in tissue may be a better way of quantifying the antibody response than ELISA,
- clearance mechanisms remain murky but microglia are part of it,
- amyloid immunotherapy might stem tau pathology,
- all eyes will be on the passive vaccine once it has entered phase 2.
The AD/PD meeting featured other talks on vaccination, such as an update by Beka Solomon on her approach using filamentous bacteriophages to deliver Aβ peptides through the nose (Solomon, 2005), but this writer was unable to attend them all. As always, meeting attendees are cordially invited to complete this update with their own notes and corrections.—Gabrielle Strobel.