Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Cannabinoid Receptors and AD: Searching Beyond the Simple Story
28 February 2005. In a well-publicized article in the February 23, 2005 issue of the Journal of Neuroscience, researchers from Spain describe changes in cannabinoid receptors in the brains of AD patients, as well as animal behavioral and in-vitro data suggesting that cannabinoid agonists can protect neurons by reducing microglial activation.

The headlines on this study were predictably tantalizing (see, for example, "Marijuana May Block Alzheimer's"), but also misleading. The mass media stories barely dug beyond the paper’s stated implication that marijuana’s active ingredients could stem the progression of neurodegeneration. In reality, however, the story is more complicated and still unfolding. To begin with, two cannabinoid receptors have been identified. CB1 is the major type in brain, expressed by all types of nervous system cells, and apparently responsible for the psychoactive effects of the drug. CB2 is mainly expressed in immune system cells, but also in microglia (Benito et al., 2003), and may mediate neuroprotective effects of the drug. To complicate matters, cannabinoids may interact with other, still uncharacterized receptors.

There are many reports, in vivo as well as in vitro, of cannabinoids protecting neurons in models of excitotoxicity, ischemia, or trauma (see ARF related news story). This protection might result from effects on glutamate transmission or calcium flux. However, Pat McGeer and his colleagues at the University of British Columbia, Vancouver, have reported that agonists with affinity for both receptors are neurotoxic, a characteristic apparently mediated by CB1, whereas CB2-selective agonists can prevent microglia-mediated cell toxicity (Kegeris et al., 2003). Moreover, a group led by Julian Romero of the Fundacion Hospital Alcorcon in Madrid has reported increased expression of CB2 in AD brain, specifically in plaque-associated microglia, with no evidence of changes in CB1 levels (Benito et al., 2003). These researchers also reported finding both receptors in amyloid plaques.

The current paper, by María de Ceballos and colleagues at the Cajal Institute and Complutense University in Madrid, expands on these findings. In contrast to the study from Romero's group, first author Belén Ramírez and colleagues report a reduction in CB1 in AD brain. Specifically, neurons in the vicinity of activated microglia and CB1-containing plaques did not express CB1 in four of six AD cases. The authors also report that four of six AD cases showed a CB2-signal in dystrophic neurites and in neurons with evidence of tangles. Both receptors showed increased nitration in AD brain relative to control.

In one set of experiments, Ramírez and colleagues studied the interactions of cannabinoids and acutely administered Aβ in rats. In behavioral assessments of spatial learning, a nonselective CB1/CB2 agonist protected rats against Aβ-induced deficits. This cannabinoid also prevented Aβ-induced microglial activation in vivo, and counteracted Aβ-induced reductions in the neuronal proteins calbindin and α-tubulin, the authors report. In another set of experiments, this time in vitro, cannabinoid agonists prevented Aβ-induced microglial activation, regardless of whether they were CB2-specific or not, the authors write. Both agonists are reported to have blocked neurotoxicity induced by these activated microglia.

The authors note that in their microglia-neuron cell culture experiments, a CB2 receptor agonist was just as effective in protecting neurons as one that targets both cannabinoid receptors. They suggest that pursuing specifically the CB2 receptor in therapeutic strategies, rather than mixed-activity agonists, might avoid the psychoactive effects mediated by the CB1 receptor.

In contrast to this, McGeer and colleagues did not find CB1/CB2 agonists to be protective, but rather the opposite (Kegeris et al., 2003). "CB1 receptor agonists like THC are toxic to neurons and it would be a mistake to leave an impression, however indirect, that there might be some benefit to cannabis in AD," McGeer told ARF. "CB2 receptor agonists are clearly antiinflammatory, but if they also stimulate CB1 receptors, as do the ingredients of cannabis, the benefit will be offset by toxicity to neurons."—Hakon Heimer.

Reference:
Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML. Prevention of Alzheimer's disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci. 2005 Feb 23;25(8):1904-13. Abstract

 
Comments on News and Primary Papers
  Comment by:  Giuseppe Esposito
Submitted 28 February 2005  |  Permalink Posted 28 February 2005

This is an excellent paper and it markedly focuses on the importance of both reactive gliosis and the cannabinoid receptor involvement in Alzheimer disease. Targeting reactive gliosis may represent a new, promising approach to inhibit progression of Alzheimer disease (AD). It should be interesting to see in the future the effect of β amyloid on reactive gliosis and relative CB2 expression in specific hippocampal areas. Moreover, a possible cross-talk between specific CA1, CA2, and CA3 neurons with reactive microglia needs further investigation.

View all comments by Giuseppe Esposito

  Comment by:  Jacob Mack
Submitted 2 March 2005  |  Permalink Posted 2 March 2005

This is probably the best paper on the subject I have seen yet. If CB1 receptors in the brain could be utilized in programmed cell death we could have a brilliant first step in finding a cure for AD. And since antibodies and complement proteins are involved in response to amyloid, CB2 receptors could be manipulated to downregulate cytokines MHC, HLA, and MAC (major histocompatibility molecule, human leuokocyte antigen, membrane attack complex, respectively).

Furthermore, this could also provide a new way of changing expression of protein kinases, phosphatases, ER response to stress. THC could prove very useful in preserving, returning, and even increasing neuronal functions and thus memory and functioning in society. On a final note, glia have been found themselves to be imperative to learning and transmitting messages to neurons. Superb paper!

View all comments by Jacob Mack


  Comment by:  Julian Romero
Submitted 2 March 2005  |  Permalink Posted 2 March 2005

Considering data from Ramírez et al. (2005), we can effectively conclude that the endocannabinoid system may be a promising therapeutic target in Alzheimer disease (AD). This report shows the first functional evidence on neuroprotective effects of CB1 and CB2 agonists in in vivo and in vitro models of AD. Further, these authors have found that both CB1 and CB2 agonists are capable of preventing amyloid-β-induced microglial activation and improving behavioral performance in a rat model of AD. Although difficult to connect with results obtained in rats, data from human samples showed a decrease in CB1 functional coupling. The authors also indicate that CB1 protein seems to be decreased in neuronal elements located on the vicinity of BA plaques.

This paper contains some discrepancies with previous data reported by us and others. For instance, while we recently reported CB2 expression in microglial cells in amyloid-β plaques (Benito et al., 2003), Ramírez et al. show only neuronal staining for these receptors. Further, these new data add more controversy to the precise role(s)...  Read more


  Comment by:  P.L. McGeer
Submitted 3 March 2005  |  Permalink Posted 3 March 2005

Comment by Pat McGeer and Andis Klegeris
Ramirez et al., in their paper on prevention of Alzheimer disease pathology by cannabinoids, concluded that “cannabinoids succeed in preventing the neurodegenerative process occurring in the disease.” This conclusion is open to question. It is based on a series of experiments demonstrating the antiinflammatory effects of stimulating CB2 receptors. However, the authors did not investigate the effects of stimulating selectively CB1 receptors.

Cannabinoids such as Δ-9 THC stimulate both CB1 and CB2 receptors. CB1 agonists are toxic to several types of neuronal cells in vitro (Blevins and Regan, 1976; Chan et al., 1998; Klegeris et al., 2003; Lew, 1996). In vivo data show that Δ-9 THC can cause neuronal death after prolonged exposure periods (Scallet, 1991). Heavy use of cannabis is also known to have deleterious effects on cognition and memory (Pope and Yurgelun-Todd, 1996; Solowij et al., 2002), despite some reports of the neuroprotective effects of cannabinoids (for review see Guzman et al., 2001).

Ramirez et al....  Read more


  Comment by:  Jacob Mack
Submitted 4 March 2005  |  Permalink Posted 5 March 2005

Pat McGeer makes an interesting point, but further review of the research shows that agonists of CB1 receptors can in fact be neuroprotective. It is quite possible to manipulate CB1 receptors to induce apoptosis in affected neurons (i.e. those with amyloid deposits). In vivo experiments have suggested possible therapeutic treatments utilizing CB1 receptors.

Some experiments point to damge caused by overstimulation of CB2 receptors, as well, but more research is needed to properly utilize agonist/antagonist signals to manipulate the immune response in AD patients. Check out some of the research coming out of Canada as early as 1998. Fatty acid cannabinoid-like brain chemicals show much promise in helping treat AD, slowing progression, and possibly devloping new preventive measures.

View all comments by Jacob Mack


  Comment by:  Esther Shohami
Submitted 7 March 2005  |  Permalink Posted 9 March 2005

This is a very well-designed study that adds up to the accumulating evidence on cannabinoid-mediated neuroprotection. It shows many aspects of their beneficial effects, in experimental models (both in-vitro and in-vivo), and highlights the effect of cannabinoids on activated microglia, namely, on inflammatory processes. The experimental findings are supported by findings from clinical material of AD patients, and the authors propose that attenuation of long-lasting inflammatory reaction by cannabinoids may prevent neurodegenerative processes.

Studies from our own (Panikashvili et al. 2001; 2005) and many other laboratories well agree with this concept. Yet, in contrast to the large body of evidence suggesting a neuroprotective role of cannabinoids, another paper should be cited that, like Pat McGeer’s group, reports the toxic effect of anandamide {“The dark side of endocannabinoids” : A neurotoxic role for anandamide, (Cernak et al., 2004)). I am not sure yet how to reconcile between these conflicting data.

Our group is interested in the pathophysiology of traumatic...  Read more

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad