Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
"Bio-Barcode" Amplifies Aβ Oligomer Signal, Proffers Candidate Diagnostic Test
4 February 2005. By amplifying small quantities of Aβ oligomer in cerebrospinal fluid, a methodology referred to as the "bio-barcode" could serve as a diagnostic or monitoring test for Alzheimer disease, according to a study published this week in the PNAS Early Edition. In the paper, a team of chemists at Northwestern University in Evanston, Illinois, led by Chad Mirkin and collaborating with Bill Klein's group at the same institution and researchers at Rush University Medical Center in Chicago, finds preliminary evidence that levels of Aβ oligomers (or amyloid-β-diffusible ligands, ADDLs) reliably distinguished AD patients from control subjects in an initial sample, with little of the overlap that has hobbled prior efforts to find biochemical AD biomarkers.

The bio-barcode method developed by Mirkin and colleagues (Nam et al., 2003) is designed to amplify extremely low levels of protein or oligonucleotide in solution. The method involves getting the scarce proteins to bind to gold particles festooned with polyclonal antibodies—in this case, ADDL antibodies developed by Klein and colleagues, who have found ADDLs to be elevated in AD brain and in AD transgenic mice (Chang et al., 2003; Gong et al., 2003; also see ARF related news story). The gold particle has also been tagged with thousands of identical single strands of DNA, which amplify the ADDL signal. A specific sequence has been chosen to uniquely identify ADDLs, thus the barcode analogy. Mirkin and colleagues suggest that many different scarce proteins can be assayed at once, each having a unique DNA "barcode."

The ADDL-gold-DNA cluster is isolated by means of another molecule complex—a magnetic particle tagged with ADDL monoclonal antibodies. Magnets pull the combined complex out of solution, and the DNA is separated from the gold and quantified. Mirkin's group reports that the bio-barcode method has proven capable of detecting attomolar quantities. That equals some 18 to 20 copies of a given protein in 10 microliters of solution, according to the authors.

Klein and colleagues hypothesized that traces of ADDLs might diffuse out from brain tissue into the CSF. In the current pilot study, led by first author Dimitra Georganopoulou, the researchers found that ADDL concentrations in the CSF of 15 AD patients were consistently higher than those in 15 age-matched controls. Only two of the AD patients had an ADDL concentration in the range of the control people: One of these had little clinical evidence of the disease (evidenced by a high MMSE score), and the other had pathological evidence of infarctions.

The authors note that any other scarce pathogenic AD markers found in the CSF could also be assayed in this fashion, potentially providing more powerful predictive value. Also, they write, "it suggests that the soluble pools of ADDLs that exist in the human brain extend to the CSF, and that elevated levels of ADDLs correlate with the presence of the disease."—Hakon Heimer.

Reference:
Georganopoulou DG, Chang L, Nam J-M, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc Natl Acad Sci U S A. 2005 Feb 4; [Epub ahead of print] Abstract

 
Comments on News and Primary Papers
  Primary Papers: Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease.

Comment by:  George M. Martin, ARF Advisor (Disclosure)
Submitted 11 February 2005  |  Permalink Posted 13 February 2005
  I recommend this paper

This paper reports the fruits of a wonderful collaboration between an Alzheimer researcher (Bill Klein) and a "nanochemist", Chad Mirkin, both at Northwestern University. It follows very important work by Bill Klein and his colleagues implicating amyloid beta diffusable ligands (ADDLs)in the pathogenesis of the synaptic loss associated with Alzheimer's disease. Using the extraordinarily sensitive "Bio-Bar Code-based DNA Detection" system (J-M Nam et al., J Am Chem Soc 126:5932, 2004) with a pair of monoclonal and polyclonal antibodies to ADDLs, they were able to differentiate a group of 15 AD CSF specimens from 15 controls, with the exception of two possibly anomalous AD cases. The authors caution readers that a much larger study will be required. It would be especially important to include subjects with Mild Cognitive Impairment. The sensitivity of the method is such that there is reason to believe that useful diagnosic discriminations might be made using specimens of peripheral blood.

View all comments by George M. Martin

  Primary Papers: Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease.

Comment by:  Andre Delacourte, ARF Advisor
Submitted 14 February 2005  |  Permalink Posted 14 February 2005
  I recommend this paper

  Primary Papers: Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease.

Comment by:  RICHARD NOWAK
Submitted 21 February 2005  |  Permalink Posted 21 February 2005
  I recommend this paper

I urge everyone to read this paper - it is a must read for anyone working in neurodegeneration. For the first time the possibility of early noninvasive detection of AD is on the visible horizon.

View all comments by RICHARD NOWAK
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad