Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Window to the Brain Shows Dystrophic Neurites Shrinking
31 January 2004. Combining their individual fortés, the laboratories of Dave Holtzman at Washington University, St. Louis, and Brian Bacskai and Brad Hyman at Massachusetts General Hospital, Charlestown, treat us to the sight of neurons being treated before our eyes. In a study published online January 20, 2005, in the Journal of Clinical Investigation, fluorescently labeled dystrophic neurites in the cortex of PDAPP mice appear to shrink or disappear just days after Aβ antibodies are applied to the cortical surface.

For several years, Bacskai and Hyman have been wowing people with their "windows on the brain," openings in the skulls of mice through which they apply drugs to the cortex and then observe the results with two-photon microscopy. They have already visualized how plaques grow in AD transgenic mice, and have shown that amyloid plaques are cleared days after the application of Aβ antibodies to the cortical surface (Bacskai et al., 2001; Bacskai et al., 2002). Bacskai and Hyman have also assessed neuritic pathology in PDAPP mice, finding postmortem evidence that the Aβ antibodies can rapidly reduce neuritic pathology (Lombardo et al., 2003), though the researchers were unable to visualize the neurites through the windows.

Enter the glowing yellow mouse from Holtzman's lab. Holtzman and colleagues have crossed PDAPP mice with transgenic mice that express yellow fluorescent protein (YFP) throughout the neuronal cytosol, reaching into distal neurite tips. With these mice, the researchers have found evidence that neuritic dystrophy is much more extensive than was previously thought (Brendza et al., 2003).

Neurite stakeout detects disappearing pathology
The image on the left shows yellow fluorescent protein (YFP)-labeled neurites—imaged through a cranial window with two-photon microscopy—in a living PDAPP;thy-1:YFP double-transgenic mouse. Enlarged, bulbous, dystrophic neurites surrounding an amyloid plaque (not visualized in this image) can be seen. On the right, the same plaque three days after the cortical surface was treated with 10D5 anti-Aβ antibody. There is a reduction in YFP-labeled dystrophic neurites, and the arrows show two dystrophic areas that are present at day 0 and absent at day 3. (Scale bar = 10μm) [images courtesy of Bob Brendza, Washington University]

Bob Brendza in Holtzman's lab led the current collaboration, which also included Bill Klunk and Chet Mathis at the University of Pittsburgh, and Steve Paul and Kelly Bales at Eli Lilly. First, the researchers just watched, and noted that the numbers of dystrophic neurites surrounding individual plaques did not change over a period of three days. Similarly, individual dystrophic neurites under scrutiny were stable during this period. However, when they applied 10D5 Aβ antibodies to the cortical surface, the researchers observed significant morphological changes within only three days. They witnessed a substantial reduction, or disappearance altogether, of smaller dystrophic neurites, as well as the reduction or elimination of dystrophic regions on otherwise normal-looking dendrites or axons. Some of these neurites were followed for up to a week, with no return of the pathology. At the same time, however, larger dystrophic neurites appeared impervious to the antibody treatment, leading the authors to suggest that additional doses, or time, might be needed to get a more widespread benefit.

This method did not allow the researchers to quantify changes in amyloid burden. In a separate series of experiments, they found that the passive immunization reduced total Aβ and thioflavin S-positive plaques but had no effect on levels of PBS-soluble Aβ. This, Brendza and colleagues suggest, would lead to the conclusion that fibrillar Aβ is what the antibodies are targeting.

"Based on these data, it appears that axonal and dendritic structural damage associated with amyloid deposits is not permanent and is, at least in part, reversible over a relatively short time frame. Further, the specificity of the antibody shows that Aβ itself causes these reversible structural changes," write the authors. —Hakon Heimer.

Reference:
Brendza RP, Bacskai BJ, Cirrito JR, Simmons KA, Skoch JM, Klunk WE, Mathis CA, Bales KR, Paul SM, Hyman BT, Holtzman DM. Anti-Aβ antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice. J Clin Invest. 2005 Jan 20; [Epub ahead of print] Abstract

Q&A with Bob Brendza.

Q: How do your results extend those of your collaborators at MGH, who looked at effects on neurites following cortical administration of Aβ antibodies about a year and a half ago?
A: The Lombardo et al. paper was a postmortem study. It reported the very important finding that mice receiving antibody treatment had a significant reduction in abnormal neurite geometry that correlated with Aβ clearance. They didn't see much of a change in neuritic dystrophy when assessing it with APP immunoreactivity. YFP expression is a very sensitive marker for assessing neuritic dystrophy and is actually more sensitive than silver or APP staining in detecting dystrophic areas (especially smaller dystrophic swellings). Our 2003 J. Comp. Neurology paper actually compared the different methods. So, the three major differences between our JCI paper and the Lombardo et al. paper was that our study was in vivo, we tracked neuritic dystrophy in individual neuritic plaques, and we used a more sensitive method to monitor neuritic dystrophy and neurite morphology.

The other advantages of using YFP are that YFP requires no exogenous cofactors or substrates to fluoresce and diffuses freely throughout the cytoplasm; thus, it fluorescently labels all neuronal processes including axons, dendrites, and dendritic spines. These features of YFP allow neurites to be easily visualized in live tissue without any potentially disruptive manipulations. Since cytoplasmic YFP labels all neuronal processes indiscriminately, the morphology and dynamics of normal and dystrophic neurites of labeled neurons in PDAPP; YFP double Tg mice can be observed without concerns regarding tissue penetration or alteration of target molecules by the AD pathogenic environment, which are potential problems associated with the use of traditional histological probes.

 
Comments on News and Primary Papers
  Primary Papers: Anti-Abeta antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice.

Comment by:  Andre Delacourte
Submitted 31 January 2005  |  Permalink Posted 31 January 2005
  I recommend this paper

  Comment by:  Samuel Gandy
Submitted 31 January 2005  |  Permalink Posted 31 January 2005

"Until the Last Dog(ma) Dies": Some Neuritic Dystrophy Is Reversible by Passive Immunization of PDAPP Mice
A multidisciplinary group has demonstrated that at least some neuritic dystrophy in PDAPP mice is reversible. Holtzman from Wash U, Paul from Lilly, Mathis and Klunk from Pitt, and Bacskai and Hyman from MGH contributed their considerable talent to a new paper in the current issue of The Journal of Clinical Investigation. Using the open skull method and Congo red derivative methoxy-X04 devised by the MGH and Pittsburgh groups, respectively, the team followed with serial imaging the morphology of swollen (dystrophic) neurites surrounding cortical amyloid deposits in the PDAPP mouse. Conventional wisdom would have predicted that these swellings might be permanent, but the new paper describes how passive immunization with anti-Aβ antibodies had a significant effect on partially normalizing the shapes of the processes.

The new paper builds on earlier work by the MGH group (Lombardo et al., 2003): The advance of the...  Read more


  Primary Papers: Anti-Abeta antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice.

Comment by:  Thomas Bayer
Submitted 1 February 2005  |  Permalink Posted 1 February 2005

The authors used multiphoton microscopy, an elegant technique, to monitor the dynamics of neuritic plaques in living mice. They used the PDAPP;Thy-1:YFP transgenic mouse model, which develops plaque pathology and expresses yellow fluorescent protein in a subset of neurons. Through cranial windows, Aβ deposits were analyzed with injected methoxy-X04, and dystrophic neurites with YFP-induced fluorescence. Over a period of 72 hours, the amyloid-associated neurites remained stable. However, after application of the anti-Aβ antibody 10D5 to the cortical surface, the number and total cross-sectional area of dystrophic neuritis decreased significantly. This clearly demonstrates again the value of passive immunization to reduce extracellular plaque load and the associated neuritic pathology.

Although these results are very promising, novel transgenic mouse models teach us that extracellular amyloid plaques are not a major trigger for the dramatic neuron loss and brain atrophy. On the contrary, amyloid plaques do not correlate with the hippocampal neuron loss in the transgenic...  Read more


  Comment by:  J. Lucy Boyd
Submitted 1 February 2005  |  Permalink Posted 1 February 2005
  I recommend the Primary Papers

  Primary Papers: Anti-Abeta antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice.

Comment by:  Frank Bernier (Disclosure)
Submitted 2 February 2005  |  Permalink Posted 2 February 2005

This paper by the Holtzman group supports the original work of the Bacskai/Hyman group that also showed that reduction of Aβ in the brain can induce a rapid structural recovery of existing amyloid-associated neuritic dystrophy. The originality of this new paper is that the analysis was performed in a living mouse brain as opposed to postmortem in the original study published in 2003 (Lombardo et al.). The data presented support the AD-amyloid hypothesis and, indeed, suggest that reducing Aβ (via an immunotherapy, at least) will be effective.

I would have liked to see if the same effect could be observed if the antibody is injected into the blood. Would this also reduce neurite dystrophy over the same time period? This is worthy of demonstration since, realistically, the current AD immunotherapy in development will require the injection of humanized Aβ antibodies into the bloodstream.

Moreover, although the study clearly demonstrates histological improvements (reduction of neurite dystrophy) after the antibody treatment, it...  Read more


  Primary Papers: Anti-Abeta antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice.

Comment by:  John Trojanowski, ARF Advisor
Submitted 3 February 2005  |  Permalink Posted 3 February 2005

This paper by Brendza et al. elegantly confirms and extends previous studies by this group and others. It uses living PDAPP:Thy-1:YFP transgenic mice and multiphoton microscopy to show that passive immunization with anti-Aβ antibodies not only is able to reduce or eliminate cortical deposits of Aβ, but also the associated dystrophic neurites. These are novel and important studies, as they imply that the therapeutic effects of passive immunization may extend beyond fibrillar or aggregated Aβ deposits themselves to pathological dystrophic processes that are a prominent feature of Alzheimer disease (AD) brain pathology.

This study is significant, as dystrophic processes are well-recognized but poorly understood components of AD brain pathology despite having been described nearly 20 years ago as sites of tau accumulation (e.g., Ihara, 1988). In addition, many studies have shown that dystrophic neurites also contain other elements including fragments of APP flanking the Aβ domain and neurofilament proteins (e.g.,   Read more


  Comment by:  Elizabeth Petersen
Submitted 2 February 2005  |  Permalink Posted 4 February 2005
  I recommend the Primary Papers

Thank you for offering such a variety of papers by people who are spending their lives looking for answers.

PS: Footnotes for lay persons would help.

View all comments by Elizabeth Petersen


  Primary Papers: Anti-Abeta antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice.

Comment by:  Takaomi Saido, ARF Advisor
Submitted 8 February 2005  |  Permalink Posted 8 February 2005

Brendza and colleagues demonstrate that administration of anti-Aβ antibodies into APP-transgenic mouse brain results in recovery of dystrophic neuritis surrounding Aβ plaques. The authors employed multiphoton microscopy to detect dystrophic neuritis labeled by transgene-derived YFP. This detection method allows in-vivo observation of Aβ plaques and dystrophic neuritis in living mice, although it is not fully non-invasive, as it requires cranial surgery to make a small window on a cranial bone.

The effect of the antibody administration is not very large, but is statistically significant. The authors’ observation indicates that Aβ removal leads to recovery of neuritic dystrophy and that the processes involved in dystrophic neuritis are reversible until they reach a certain point. The results shown by Brendza and colleagues thus provide additional support for therapeutic strategies targeting Aβ.

There remains, however, a primary question whether the formation of dystrophic neurites is a main pathway causing cognitive dysfunction in the pathological cascade of Alzheimer...  Read more

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad