Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Statins Boost α-Secretase, but Not Through Cholesterol
13 January 2005. In efforts to interfere with Aβ peptide production, most of the attention has been lavished on the β- and γ-secretase enzymes. Could, however, their neglected cousin α-secretase prove to be the better target? In an article published January 10, 2005, in the journal Public Library of Science Medicine, Sam Gandy’s group of Thomas Jefferson University, Philadelphia, with colleagues elsewhere, report evidence suggesting that statin drugs can boost α-secretase cleavage of AβPP via the Rho/ROCK1 protein phosphorylation pathway. If confirmed, this data could offer new insight into how one might tip the scales away from β cleavage of AβPP. It could also help explain the mechanism underlying the apparent beneficial effect of statin drugs on Alzheimer disease.

Recent evidence has shown that upregulating α-secretase reduces brain levels of Aβ in APP transgenic mice (see ARF related news story). Moreover, "shedding" of the α-secretase-cleaved APP ectodomain appears to be stimulated by statin drugs (see Parvathy et al., 2004). In the current paper, first author Steve Pedrini and colleagues take aim at one of the candidate pathways for mediating this effect (for review of pathways to boosting α-secretase cleavage, see Allinson et al., 2003).

Statins reduce cholesterol levels, at least in part, by inhibiting the ability of the enzyme hydroxymethylglutaryl-coenzyme A (HMGCoA) reductase to promote the conversion of HMGCoA into the cholesterol-synthesis intermediate mevalonic acid. But in doing this, statins also reduce levels of other intermediates on the way to cholesterol, including isoprenoids such as farnesyl pyrophosphate and geranylgeranyl pyrophosphate. Pedrini and colleagues point out that these lipids play other regulatory roles. For example, they are critical in activating the Rho family of GTPases, which in turn activate Rho-associated coiled-coil containing kinases (ROCKs). By inhibiting HMGCoA, then, statins might ultimately reduce ROCK-mediated protein phosphorylation. One member of this family, ROCK1, has been implicated in the regulation of γ-secretase cleavage (Zhou et al., 2003; but see also γ-secretase news story from the 2004 Society for Neuroscience meeting). Pedrini and colleagues suggest that the isoprenoid-Rho-ROCK1 pathway might also be involved in the statin-induced shedding of soluble α-secretase-cleaved AβPP (sAβPPα).

Working in mouse neuroblastoma cells transfected with the gene for APP carrying the Swedish AD-causing mutation, the researchers find evidence consistent with this hypothesis. A dominant-negative form of ROCK1 increased sAβPPα, as did an inhibitor of the enzyme required for isoprenylation of Rho. Conversely, a constitutively active ROCK1 was able to abolish statin-induced sAβPPα shedding. Further implicating the isoprenoid portion of this pathway in statins' actions on α cleavage, the researchers abolished statin-induced shedding of sAβPPα by adding mevalonic acid, effectively bypassing the statin inhibition of HMGCoA reductase. On the other hand, inhibiting the isoprenylation of Rho mimicked the effects of statins on sAβPPα.

"Taken together, these results suggest the existence of a reciprocal relationship between isoprenoid-mediated Rho/ROCK signaling and sAPPa shedding, i.e., activation of ROCK1 blocks basal and stimulated shedding while ROCK1 inhibition apparently relieves a tonic negative influence exerted on shedding by ROCK1 activity," write the authors. Whether statins will therefore block ROCK1 activity in neurons is something the authors are now investigating.—Hakon Heimer.

References:
Pedrini S, Carter TL, Prendergast G, Petanceska S, Ehrlich ME, Gandy S. Modulation of Statin-Activated Shedding of Alzheimer APP Ectodomain by ROCK. PLoS Med. 2005 Jan;2(1):e18. Epub 2005 Jan 11. Abstract

Synopsis: How Statins May Protect Against Alzheimer DiseasePLoS Med 2(1):e22.

Q&A with author Sam Gandy

Q: There has been mention of the Rho-ROCK pathway possibly boosting Aβ42 production by effects on γ-secretase. How does this relate to your results?
A:We haven't yet addressed it directly.

Many papers (e.g., Zhou et al., 2003) used Y27632 (nominally a ROCK inhibitor) to imply ROCK actions. Surprisingly, we found opposing results on statin-activated α-secretion when we used dominant-negative ROCK vs. Y27632. The predicted result was that they would show identical effects. Since our conditionally active ROCK had effects that were the opposite of those of dominant-negative ROCK, we chose to pursue the results from those molecules that were in "agreement" and, for now, set aside the results with the drug (which we discuss in the paper).

The Rho/ROCK pathway is also very state-dependent. In fact, there are examples of ROCK activators and ROCK inhibitors doing the exact same thing even in the same system, rather than having opposing effects. Presumably there is some moment-to-moment balance of which pathways prevail. Obviously, there is a lot we don't know about ROCK regulation.

There may be real conflicts in predicted results because different cells or different cellular states were not controlled for. There may also be conflicting data depending on whether ROCK's role is implicated by drug or by molecular biology.

So, the short answer is that we must look directly at Aβ, and we must look at neurons. We are doing this now. If it seems like a mess, it is. The results are too unpredictable to guess. We just have to do the experiments.

Q: What about the effects of isoprenoid pathway (pathways?) on γ- vs. α-secretase? Could it be affecting both? Different isoprenoids? Is all that still to be investigated?
A:Again, the short answer is yes, multiple pathways could be differentially regulated, and we just have to do the experiments.

α- vs. β-secretase "competition" controls levels of Aβ only, while γ-secretase can control either levels or 40/42 ratio. It's really probably just the absolute level of Aβ42 that is the most important. Standardizing to Aβ40 was devised in the early 1990s by Steve Younkin and Dennis Selkoe as a convenient way of comparing one dish to another. Aβ42 is so vanishingly low in amount, especially before highly sensitive ELISAs were developed, that the standardization was crucial for getting interpretable data. The Aβ42 signal and variations could easily get lost in the background noise were it not for this innovative standardization technique. Even so, Aβ42 is the real culprit (this is also the title of a highly cited review by Steve Younkin in Annals of Neurology).

Theoretically, if you hyperactivate α-secretase enough, you might get so little Aβ made that the ratio wouldn't matter. Hyperactivating α-secretase would be tantamount to BACE inhibition (which, using the small-molecule BACE1 approach, has been very difficult so far due to the large catalytic pocket in BACE). The trouble in developing BACE inhibitors has provided some impetus for revisiting the strategy of indirect BACE inhibition by hyperactivating α-secretase.

There is some disagreement over what ROCK does to γ-secretase: Some say it inhibits generation of 42 specifically (Zhou et al., 2003). But at least one group at the Alzheimer Congress in Philadelphia and/or at the SFN Meeting in San Diego reported that ROCK controlled both Aβ40 and Aβ42. I haven't heard an update on how that has sorted out.

Among known isoprenylated substrates, farnesylation is most common, but it may be that we just don't know all the geranylgeranyl substrates yet. Certainly different Rhos can differentially regulate the same reaction: I can't immediately think of an example where farnesylation causes "reaction A" to proceed in one direction and geranylgeranylation causes the reverse. These pathways are receiving a lot of attention in oncology research, where a farnesyl transferase inhibitor is in human clinical trials.

Q: What are the principle dietary sources of isoprenoids?
A: Squalene is the most readily identifiable dietary isoprenoid (on MedLine), and olive oil is a rich source. Phytosteroids and oxidized sterols seem to be included in this class, as well. Dietary isoprenoids exert complex actions on cholesterol metabolism at the level of both HMGCoA reductase and LDL, and have been proposed as adjuncts to statins in ASCVD and as anti-neoplastics, but their anti-neoplastic properties still fall in the realm of alternative medicine.

Given the vicissitudes of this pathway, I would not hazard a guess as to which way they would modulate α- and γ-secretases. If I really wanted to know, I would do the experiment that Steve Paul suggests: feed some olive oil to a plaque-forming mouse, or a triple transgenic with both plaque and tangle etiology, and see what happens to pathology and behavior. Maybe the olive oil industry would support such a study? (Only half kidding!)

 
Comments on News and Primary Papers
  Comment by:  Benjamin Wolozin, ARF Advisor (Disclosure)
Submitted 13 January 2005  |  Permalink Posted 13 January 2005

Statins are known to increase secretion of APP, but the mechanism by which this occurs is poorly understood [1]. The current manuscript by Pedrini et al. focuses on the effect of statins on Rho and Rho-associated coiled-coil containing kinase 1 (ROCK). The group observes that a constitutively active ROCK prevented the actions of statins on APPsα. This suggests that inhibition of ROCK plays an important role in the mechanism of action of statins. They also performed the converse experiment, and examined how dominant-negative ROCK affects secretion of APPaα. Unfortunately, this is a point where the group's story strays. The dominant-negative ROCK increases APPsα secretion on cells not exposed to statins, but does not increase the actions of statins; thus, the effects of dominant-negative ROCK are not strictly opposite to those of the constitutively active ROCK. These data suggest that ROCK can modulate the effects of statins, but do not explicitly prove that statins act on APPsα through ROCK. Nonetheless, this is a very interesting story which nicely integrates Rho signaling into...  Read more

  Comment by:  Luigi Puglielli
Submitted 13 January 2005  |  Permalink Posted 13 January 2005

Since the appearance of the first epidemiological and animal studies claiming a connection between cholesterol and Alzheimer disease, at least four different aspects of cholesterol metabolism have been directly linked to AD neuropathology:

(i) clustering of APP and BACE1 into lipid rafts, which facilitates β cleavage of APP (1);
(ii) intracellular cholesterol distribution, which is able to activate the amyloidogenic processing of APP (2);
(iii) ozonolysis of cholesterol, which generates peroxi-derivatives of cholesterol that accelerate the aggregation of Aβ monomers (3), and
(iv) Aβ-mediated oxidation of membrane cholesterol, which liberates H2O2 and aggravates oxidative stress (4).

Therefore, strategies aimed at the modulation of cholesterol metabolism/distribution in the brain have received wide attention for the prevention of AD. Among those, statins seem to be especially welcome, mostly because they are already available, have been widely studied for their role in the prevention of atherosclerosis, and are overall very safe. Statins were introduced as...  Read more


  Comment by:  Suzana Petanceska
Submitted 13 January 2005  |  Permalink Posted 13 January 2005

Gary Landreth's paper in the current issue of The Journal of Neuroscience on statins reducing Aβ-induced microglial inflammatory responses is very elegant work (Cordle and Landreth, 2005). This study shows that statin treatment of microglia and monocytes leads to robust reduction of Aβ-induced Il1β and inducible nitric oxide synthase expression, as well as reduction of nitric oxide production. As isoprenoids and the Rac and Rho-GTPases are implicated as mediators of these effects, this study complements the findings by Pedrini et al.

Furthermore, in 2002, Barbara Cordell's group provided evidence that ApoE secretion from glia requires a prenylated protein entity, and that the reduction of ApoE secretion by statins is due to inhibition of the synthesis of isoprenoids (Naidu et al., 2002).

In 2003, we discussed possible mechanisms by which statins can reduce brain amyloidosis (Petanceska et al., 2003). We hypothesized that...  Read more


  Comment by:  Robert Peers
Submitted 15 January 2005  |  Permalink Posted 18 January 2005

As Sam Gandy says regarding his research on statin effects in Alzheimer disease: "If it seems like a mess, it is." Hippocrates said, "Every disease has a nature of its own, and each arises from its own natural cause." Why, 2,000 years later, is modern science unable to find a simple "natural cause" for AD?

Are we asking the right questions? Is this a modern disease, with a modern cause? How common are AD lesions in preserved brains from the 19th century? Should we examine the Yerkes and Corsellis collections?

The cholesterol-AD story has confused beginnings, and a messy ending. What government would consider mass-medicating its ageing population with statins to prevent AD, knowing that its best and most dedicated scientists had failed to find a preventable cause of the disease? Those who prefer intervention over prevention will protest that the environmental origins are so murky and multifactorial that treatment and prevention must perforce be piecemeal. It would come as a great shock to such thinking if a simple, preventable cause of the disease were found, which at...  Read more


  Comment by:  Thomas Kukar
Submitted 17 January 2005  |  Permalink Posted 18 January 2005

This manuscript confirms and extends a previous study showing that statin treatment can increase the release of sAPPα [1]. The biochemical mechanism by which HMG-CoA reductase inhibition leads to this increase isn’t fully understood. The authors present intriguing data that suggests the small GTPase pathway may be involved. First, a farnesyltransferase inhibitor was shown to increase statin-induced sAPP shedding, implying a farnesylated GTPase may be involved. They then looked at dominant-negative (DN) and constitutively active (CA) forms of ROCK, which is an effector protein kinase of the small GTPase Rho. CA ROCK decreases sAPP release while the DN form increases sAPP release. These results suggest that statin-mediated sAPP shedding could be mediated by isoprenoids, which can regulate the amount of membrane-associated Rho and thus the extent of ROCK activation.

As the authors acknowledge in the discussion, there are a couple of inconsistencies in the data that are confusing. Their data suggests that the effects of statins are mediated at the plasma membrane. They also...  Read more


  Comment by:  Dora M. Kovacs, ARF Advisor
Submitted 19 January 2005  |  Permalink Posted 19 January 2005

Pedrini et al. identified two connected pathways with ROCK1 as the central player. Their findings indicate that ROCK1 inhibits α-secretase activity; two different statins inhibit ROCK1 via reducing isoprenylation of the Rho GTPases. Thus, statins could activate α-secretase, at least in part, via inhibition of ROCK1.

Regulation of α-secretase and γ-secretase (Zhou et al. 2003) activities by the Rho/ROCK1 phosphorylation pathway may provide interesting clues to the neuronal function of the secretases. The role of the Rho GTPases in cell motility and axon guidance is well established. In neuronal cell lines, RhoA/ROCK are activated in response to repulsive cues and lead to growth cone collapse. In contrast, attractive cues activate Cdc42 and Rac GTPases, which, in turn, promote extension of axons to appropriate targets. The growth cone integrates multiple signals to produce coordinated changes in cytoskeletal dynamics. These changes are mediated by signaling via the C-terminal tails of axon guidance molecules, such as DCC, N-cadherin, NCAM, LAR, ephrinA/B, by activating either...  Read more


  Comment by:  Gary Landreth
Submitted 19 January 2005  |  Permalink Posted 19 January 2005

Clincial evidence suggests that long- term use of statins is associated with a decreased risk of Alzheimer disease (AD). As these drugs block the synthesis of cholesterol, much research has been focused on the importance of cholesterol metabolism in the pathogenesis of AD. Recently, it has been appreciated that statins can also exert biological effects independently of cholesterol. HMGCoA inhibition also blocks the production of isoprenyl precursors, and these isoprenyl groups are required for the proper function of Rho family GTPases. For example, it has been shown that inhibition of Rho contributes to the in vitro antiinflammatory effects of statins (Cordle et al., 2005).

In their recent paper, Pedrini et al. address an important issue by looking at cholesterol-independent effects of statins on APP metabolism. This group has previously shown that, in vitro, treatment of neuroblastoma cells with statins leads to an increase in shedding of sAPPα (Parvathy et al., 2004). In the present work, they expand on this theme by showing that the effects of statins on APP metabolism...  Read more


  Comment by:  Steven Paul, Yan Zhou
Submitted 21 January 2005  |  Permalink Posted 21 January 2005

Sam Gandy’s group’s study underscores an emerging role for isoprenoid-mediated regulation of APP processing and its possible relationship to Alzheimer disease pathogenesis. Over a year ago, we reported that GGPP, one of the isoprenoids synthesized in the mevalonate biosynthetic pathway, preferentially increases the generation of the more amyloidogenic Aβ species, Aβ42 (Zhou et al., Science 2003). Based on our experiments using dominant-negative and constitutively active Rho, as well as the ROCK inhibitor Y27632, we concluded that GGPP mediates an increase of Aβ42 through activation of the Rho/ROCK pathway, possibly by modulating γ-secretase.

In our opinion, the most important finding reported in our paper is the one showing that physiological lipids, such as GGPP, can regulate the generation of the amyloidogenic species Aβ42. Interestingly, isoprenoids are generated not only endogenously but also can be taken up through the diet. Thus, dietary isoprenoids could also regulate APP processing and Aβ synthesis and contribute to AD...  Read more


  Comment by:  Robert Peers
Submitted 23 January 2005  |  Permalink Posted 26 January 2005

I sincerely thank Alzforum for publishing my provocative comment on AD and cholesterol, albeit somewhat sanitized of its original pungency! If my theory about refined oils causing sporadic AD is correct, then "stripped" oil (containing little or no vitamin E, after prolonged heating) would be a good means of inducing neuronal lipid peroxidation in culture, which should generate both measurable 4-hydroxynonenal and reduced formation of secreted APP (sAPP), along with a mysterious rise in Aβ. My best wishes go to anybody who may care to do this experiment! Let us fortify ourselves with three observations that should encourage us:

1. Safflower oil, given as 20 percent of the diet, caused learning impairment in weaned rat pups (Harman et al., 1976). When the experiment was repeated with vitamin E supplementation, no harmful effects were seen on learning. Harman's safflower oil may have been typical steam-refined oil, which has about 0.45 mg of vitamin E per gm of essential fatty acids, compared with 0.65 mg in cottonseed oil, 0.36...  Read more


  Comment by:  Alexei R. Koudinov
Submitted 24 January 2005  |  Permalink Posted 4 February 2005
  I recommend the Primary Papers

Please see our commentary on this important study at PLoS Medicine eLetters page

View all comments by Alexei R. Koudinov

  Comment by:  Mary Reid
Submitted 7 February 2005  |  Permalink Posted 7 February 2005

BRG1 and BRM are subunits of the SWI/SNF chromatin remodeling complex which have been implicated in the regulation of gene expression, cell cycle control, and oncogenesis.

The Liu group [1] reports that the BAF (BRG1 associated factor) complex results in promoter activation of CSF-1 and promotes Z-DNA formation. A conformational change from B-DNA to Z-DNA in the hippocampus in AD is reported by Suram et al. [2], as is increased serum CSF-1 [3]. This might lead us to expect increased BRG1 in AD, and consequently increased ROCK1.

The Emerson group [4] reports that BRG1 binds to zinc finger proteins through a unique N-terminal domain that is not present in BRM. BRM interacts with two ankyrin repeat proteins that are critical components of Notch signal transduction. SWI/SNF BRG1 complexes, but not BRM, bind to the CREB transcription factor only when CREB is phosphorylated. DYRK1A, a gene in the Down syndrome critical region, has been found to phosphorylate CREB.

The findings by the Emerson lab would seem to provide a targeted therapy in AD as well as DS. They state...  Read more


  Comment by:  David Drachman
Submitted 9 March 2005  |  Permalink Posted 9 March 2005

The role of statins in modifying both cholesterol- and isoprenoid-related Abeta production is of consierable interest, as reported here. Alternatively, however, the effects of statins on endothelial integrity and function (via increase of eNOS and decrease of Endothelin-1, e.g.) may be especially important in sporadic Alzheimer's disease. There is extensive evidence for the key role of vascular risk factors in sporadic AD; and endothelial-secreted cytokines have been shown (for example) to be important for development and division of neural stem cells. The pleiotropic effects of statins raise many possibilities regarding which of their effects on cholesterol, Abeta, or other signalling pathways may account for their effectiveness in vascular disorders, and their potential efficacy in AD may well involve more than Abeta.

References:
Breteler, M. Vascular risk factors for Alzheimer's disease: an epidemiologic perspective. Neurobiol Aging. 2000, 21:153-60. Seshadri, S. et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. New Engl. J Med,2000; 346:476-483 Shen, Q et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 2004; 304:1338-1340 Laufs, U and Liao, JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem, 1998; 273: 24266-71

View all comments by David Drachman
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad