Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
ABCA1 Links Cholesterol and ApoE, But It May Not Be a Risk Factor for AD
13 August 2004. Genetic variants of ABCA1 (ATP-binding cassette A1), an ATP-driven transporter that pumps cholesterol out of cells, recently joined the ranks of potential risk factors for late-onset Alzheimer’s disease (see Wollmer et al., 2003 and Katzov et al., 2004). Why these variants may predispose carriers to AD is uncertain, but the role of the transporter in the periphery is to mobilize cholesterol out of cells and onto lipid-poor apolipoproteins, and it may work similarly in the central nervous system (CNS). If so, ABCA1 could provide a link between two major AD risk factors, cholesterol and apolipoprotein E (ApoE), the major lipoprotein of the CNS (see ARF related news story on the link among cholesterol, ApoE and AD). Ironically, just as two papers from independent labs report that ABCA1 keeps ApoE levels high and saturated with cholesterol, a third paper casts doubt on the link between the transporter and Alzheimer’s.

The first two papers are currently in press in the Journal of Biological Chemistry and are already available online. In the first, Dave Holtzman and colleagues, at Washington University, St. Louis, and the Carnegie Mellon University, Pittsburgh, used ABCA1 knockout mice to test the role of the transporter in the CNS. When first author Suzanne Wahrle and colleagues measured ApoE in these animals, they found that levels in the cortex and cerebrospinal fluid (CSF) were 80 and 98 percent lower than in normal mice, while animals missing only one copy of the gene had intermediate levels of ApoE (13 and 46 percent, for cortex and CSF, respectively).

To determine why levels may be so ablated, the authors looked in the CSF where the majority of ApoE exists as lipoprotein particles around 10-17 nanometers in diameter. When Wahrle fractionated CSF from ABCA1 knockout mice, she found that some particles were much smaller than normal, about 7 nanometers wide. Given the role of ABCA1 as a cholesterol transporter, this suggests that the particles may be poorly bound with the lipid. To investigate this, Wahrle examined lipoproteins secreted from cultured astrocytes, cells that are the major source of ApoE in the brain. The authors found that about 75 percent of ApoE secreted from ABCA1-negative astrocytes ends up in the smaller lipoproteins, and these particles were indeed cholesterol poor (0.69 mg cholesterol/mg ApoE, compared to 2.3 mg cholesterol/mg ApoE in particles from normal astrocytes). The authors conclude that “ABCA1 plays a major role in maintaining normal ApoE levels in vivo,” and suggest that “modulation of ABCA1 function and levels may be a novel therapeutic target for AD.”

Also reporting in the Journal of Biochemistry, Cheryl Wellington and collaborators from the University of British Columbia, Vancouver, and the Clinical Research Institute of Montreal, came to very similar conclusions. First author Veronica Hirsch-Reinshagen and colleagues also found that ApoE is depleted in the brains of ABCA1-negative mice, being 65 percent lower overall than normal, and 76 and 79 percent lower in the hippocampus and striatum, respectively.

Hirsch-Reinshagen also looked at secretion of cholesterol by cultured astrocytes and microglia, adding exogenous ApoA1 or ApoE isoforms to the culture medium to provide an apolipoprotein “sink.” The ABCA1-negative astrocytes secreted poorly in comparison to their wild-type counterparts, releasing less than five percent of their total cholesterol in comparison to 7-10 percent released from normal cells. The microglia fared slightly better, secreting about 30-40 percent less than normal cells. ApoE3 and ApoE4 provided more “pulling power” than the other lipoproteins because when these were added to the medium, more cholesterol was secreted by the cells. However, this difference was only significant in the case of astrocytes.

As for secretion of ApoE, Hirsch-Reinshagen’s data were again in agreement with the work from Holtzman’s lab. The authors found that ApoE secretion was reduced in cells lacking the cholesterol transporter. It was down by 30 percent in astrocytes and by about 90 percent in microglia.

Taken together, these papers provide a clear link between ABCA1 and ApoE metabolism in the brain. However, as Hirsch-Reinshagen and colleagues write, “the mechanisms by which ABCA1 affect ApoE metabolism in glial cells are not yet understood.” It is interesting, for example, that neither group found any alteration in ApoJ levels in the CNS of the knockout mice, suggesting that the transporter may selectively impinge on ApoE metabolism.

As for ABCA1 variants as risk factors for AD, Andrew Grupe and colleagues from Celera Diagnostic, Alameda, California, and elsewhere, report the results of a case control study in the August 19 Neuroscience Letters (currently available online).

First author Yonghong Li and colleagues genotyped ABCA1 polymorphisms in DNA samples from a total of 2,146 individuals, 980 diagnosed with AD and 1,166 controls. They identified nine single nucleotide polymorphisms (SNPs) in the ABCA1 gene, three of which were identical to those previously predicted to confer risk for AD (see Katzov et al., 2004). Li, however, found that none of the SNPs showed any significant association with late-onset Alzheimer’s, even when they conducted pairwise linkage disequilibrium analysis. The discrepancy may be due to the larger sample size analyzed in the newest study.—Tom Fagan.

References:
Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han X, Fryer JD, Kowalewski T, Holtzman DM. ABCA1 is required for normal CNS ApoE levels and for lipidation of astrocyte-secreted ApoE. J. Biol. Chem. In press. 2004. July 21. Abstract

Hirsch-Reinshagen V, Zhou S, Burgess BL, Bernier L, McIsaac SA, Chan JY, Tansley GH, Cohn JS, Hayden MR, Wellington CL. Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J. Biol. Chem. In press. 2004. July 21. Abstract

Li Y, Tacey K, Doil L, Van Luchene R, Garcia V, Rowland C, Schrodi S, Leong D, Lau K, Catanese J, Sninsky J, Nowotny P, Holmans P, Hardy J, Powell J, Lovestone S, Thal L, Owen M, Williams J, Goate A, Grupe A. Association of ABCA1 with late-onset Alzheimer’s disease is not observed in a case-control study. Neurosci. Letts. 2004. August 19;366:268-271. Abstract

 
Comments on News and Primary Papers
  Comment by:  Rudy Tanzi (Disclosure)
Submitted 13 August 2004  |  Permalink Posted 13 August 2004

After ApoE, which has an unusually large effect size as a late-onset AD gene, the remaining AD genes would be expected to have more modest to moderate effect sizes. Thus, one really needs to routinely use at least a thousand or so uniformly ascertained subjects in a case-control study to have a chance of replicating a given AD candidate gene. In this case, the collaboration between Li and colleagues and Celera tested 796 individuals (which is pretty sizeable) and could not replicate the original findings. In addition, at the recent AD meeting in Philadelphia, we could not replicate the association with ABCA1 using family-based association on the large NIMH AD sample. So, the possibilities are 1) the original result was a false positive which often plagues case control studies, 2) the original association was real but was due to linkage disequilibrium with a nearby gene and thus not readily able to be confirmed in all populations studied, or 3) the association was real, but the ABCA1 has a very small effect size in AD, and is, thus, difficult to replicate across...  Read more

  Comment by:  David Holtzman
Submitted 13 August 2004  |  Permalink Posted 13 August 2004

ABCA1 has been shown to be critical outside the brain for effluxing phospholipid and cholesterol from cells onto HDL. In the periphery, ApoAI is the main apolipoprotein in HDL. The absence of ABCA1 function results in Tangier's disease in which plasma HDL is very poorly lipidated and is rapidly metabolized resulting in very low plasma HDL levels. The two new papers by Wahrle et al. and Hirsch-Reinshagen et al. show, using ABCA1 knockout mice, that ABCA1 is also critical for effluxing phospholipid and cholesterol from glial cells onto ApoE-containing HDL in the brain. Since ApoE is the most abundant apolipoprotein produced in the brain, this results in the production of very cholesterol- and phospholipid-poor CNS HDL. There are also very low levels of ApoE in the CNS of these mice, probably because the poorly lipidated ApoE is metabolized more rapidly. These results have important implications for any effect that ApoE may have in the normal brain, but perhaps more importantly, in the physiological setting of CNS diseases such as Alzheimer's disease. As one example, it is clear...  Read more

  Comment by:  Alexei R. Koudinov
Submitted 14 August 2004  |  Permalink Posted 16 August 2004
  I recommend the Primary Papers

Cholesterol and Alzheimer's

I would like to point Alzforum readers to see the key note by Cheryl Wellington, senior author of one of the discussed articles entitled "Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain". It is freely available at Neurobiology of Lipids noteworthy articles' collection. Also, please see NoL collections index on different aspects of the role of fats in brain function and Alzheimer's disease.

I would like also to point readers to our 2001 FASEB Journal article "Essential role for cholesterol in synaptic function and neuronal degeneration", and our last year's ARF hypothesis submission setting the pathogenic primacy of cholesterol metabolism dysfunction in Alzheimer's, and explaining why Abeta and TAU changes are secondary...  Read more


  Comment by:  Jonathan Prince
Submitted 17 August 2004  |  Permalink Posted 17 August 2004

The field of complex disease genetics is in a rapid developmental mode. However, we still know frighteningly little about how gene sequence variation can affect gene function, and most genetic association studies are not designed with this in mind. Exploratory studies (a category under which the vast majority of association studies must be said to fall) merely highlight genomic regions for further analysis. Engaging in debate around genetic association data can be futile if the effect sizes we are dealing with on an epidemiological level are small. This is also true if the number of pathogenic alleles in a genomic region, their impact upon a gene, and their potential interactions are not yet known. Efforts to find genes that influence disease might be better seen as a community undertaking where the accumulating bulk of data from many independent groups can eventually lead to a strong case for (or against) a particular gene. Very few groups have available clinical materials which can capture small genetic effects and demonstrate association conclusively (if one chooses to ever...  Read more
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad