Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Early-Onset Familial AD: News
News
eFAD News Search  
Phoenix: For Shared Prevention Trials, Devil Is in the Details
This is Part 4 of a five-part series. See also Part 1, Part 2, Part 3, Part 5. See also a PDF of the entire series.

2 March 2010. Late last month in Phoenix, a roomful of senior industry and academic scientists, and regulatory and statistical advisers, dug deep into the details of a proposed pre-symptomatic trials initiative put forward by Eric Reiman, Pierre Tariot, and their colleagues at the Banner Alzheimer’s Institute in Arizona’s state capital (see Parts 1, 2, 3 of this series). After near-unanimous praise for the initiative, the attendees delved into specifics and in the process exposed topics that need more preparation before any trial can actually start. Selecting a drug, setting the right dose, and designing the trial to greatest effect were among the hot button issues, as were questions about how to clear a regulatory path and persuade companies to hand over precious drugs to a public-private study they don’t control. None of these issues appeared grave enough to derail the initiative; rather, they define the current cutting edge of how academia and industry forge new collaborations in order to move toward prevention research. Parts 4 and 5 summarize the tough issues.

Drug Selection: Can We Have Privacy, Please!
If anyone was hoping that representatives from 19 companies would meet in one room, openly discuss the pros and cons of their investigational treatments, and vote on the best candidate for a public-private pre-symptomatic trial, those hopes fizzled quickly when the discussion neared the issue. Pharma scientists who had been discussing general issues about the Alzheimer’s Prevention Initiative (API) with remarkable candor, quickly clammed up.

“I am not allowed to discuss [my company’s] or any other drugs.”

“Can’t have this conversation.”

What’s more, some academic leaders joined in, saying that their various advisory roles and confidentiality agreements with pharma companies precluded them, as well, from discussing investigational drugs in the assembled group. In essence, different people in the room knew different parts of the full truth about any given drug. Pharma people tend to know what is public, confidential to their own company, and purchased from competitive intelligence companies; some academics know only what is published and their own research; other academics may know what is published, their own research, plus confidential information from one or several companies, but not all companies. Taken together, none of these groups is in a position to talk fairly about drugs, and the last has a hard time intellectually managing their conflicts in this regard, Lon Schneider wrote to ARF.

Things took an almost comical turn for a moment when a prospective trial leader insisted, “At some point, the rubber hits the road and we need to discuss the actual drugs. Do we have to exclude the world leaders on these drugs from the discussion?” Awkward silence. Next question: “Can we at least talk about what’s publicly known about these drugs, or do all our discussions have to stay in the abstract?” On that, both industry and academics acknowledged that, in practice, they could not tell apart clearly enough what was public and what wasn’t about a given treatment, therefore would not discuss them at all. “We cannot discuss individual drugs here without getting hopelessly mired in conflict of interest,” said one pharma representative to nods around the room.

And so it was. The entire day passed without a specific treatment name having been uttered by any of the attendees. But the stalemate did not last long. It gave way to consensus that it’s a question not of will but of process—and really not so difficult. In essence, an independent group of academic scientists can solicit advice from companies about what kind of information they need in order to choose the best candidate drug for a trial—deep safety, pharmacokinetic, pharmacodynamic data, performance on specific genetic backgrounds, etc. Then this group can invite companies confidentially to nominate a compound supported by this information. The academic group conducts its own due diligence on the nominations and makes its selection. This has been done before, and partial models, such as the ADCI or the TURNS process in schizophrenia research, can guide the API.

Another difficult question concerned how to preserve precompetitive space as the API proceeds. How to define shared gains once a drug has come into play will require more thought. “This is very different from ADNI,” several scientists cautioned. The day saw some discussion about whether a drug company, which views an investigational treatment that has consumed millions of dollars in development cost as a precious “asset,” would yield control of that asset to a public-private consortium. However, that this issue is shifting became clear when others pointed to prior industry-public agreements on how to share control, for example, those negotiated by ADCS, while some other pharma representatives assured the API scientists that “If you build it, we will come.” A growing number of pharma scientists appeared to take the view that testing their drugs in earlier stages would not put an asset at unacceptable risk, but on the contrary, might in fact save an asset whose performance in clinically ill patients did not live up to expectations. All agreed that pharma scientists have more work to do to communicate these issues to senior management, where decisions about which trials to move forward are made.

Similar public-private arrangements have been negotiated in the past for proprietary drugs in the areas of estrogen replacement therapy, stroke, sickle cell anemia, and HIV prevention, though those arrangements involved primarily marketed drugs. Finally, several industry researchers suggested that positioning participation in API as a benevolent act toward a societal crisis could free industry from some of the usual proprietary restraints in releasing investigational drugs.

Safety: How Much Is Enough?
The question of how much safety data are sufficient for pre-symptomatic trials generated intense discussion. In general, if trial participants are considered healthy yet expected to take a drug for a long time, the safety bar is high, too high for most investigational AD drugs to pass at present. Reiman noted that safety is paramount in drug selection, saying “The ‘go’ decision for us is not whether we have efficacy in clinically affected patients, but whether we have safety.” Typically, drugs tested in prevention trials are already approved by the FDA for other indications, but the group assembled in Phoenix appeared most interested in investigational treatments, primarily but not exclusively anti-amyloid agents. This more ambitious goal raised questions such as these:

  • Can Phase 2 safety data possibly be sufficient?
  • If the trial is to start in 2011, will more than a handful of candidates even have more than Phase 2 safety?
  • Will the FDA require carcinogenicity tests on any chosen drug?
  • Regulatory agencies typically require at least 1,500 long-term exposure patients—how many treatments even have that?
  • Who is more able to withstand any drug side effects anyway—a cognitively healthy younger person or a person diagnosed with AD?

Some scientists felt that trial participants at highest risk of imminent AD required less stringent safety data than “regular” cognitively normal people. They argued that trial participants be involved in weighing their AD risk against possible drug risks. Some argued that people at risk for AD judge this issue differently than do their doctors and drug sponsors, who act to preclude legal consequences of drug side effects. Yet, there was no consensus on how to include people’s rationalization of their personal risks. For example, Tariot asked, “If you ask 68-year-old ApoE4 homozygote people if they’d accept the risk of vasogenic edema, some will say yes, others will say no. How do we handle that?” Others suggested that the less ambitious approach of enrolling participants whose cognition was already beginning to show signs of trouble would shift the risk equation toward treatment while also increasing the number of participants who will decline on placebo, i.e., make it easier to detect a clinical drug effect. This would not constitute pre-symptomatic treatment; rather, it would reflect the notion of conducting trials at what is sometimes called the early MCI (eMCI), or prodromal, stage of Alzheimer disease. Its downside, some noted, is that treatment may come too late to have its greatest possible effect.

At the end of the day, industry representatives agreed that they need to make haste in securing safety data. As one scientist put it, “We need to do now the appropriate safety and tolerability trials so we will be ready with that data by the time these prevention trials can be done.”

Efficacy: How Little Is Enough?
Must a drug have shown efficacy in clinical trials of mild to moderate AD in order to be chosen for a pre-symptomatic trial? Reflecting recent trends in AD research, most attendees said no, though they added that they’d feel more confident if the drug showed some signal, even a small one, in those trials. Even just for the purpose of setting the right dose, drug sponsors much prefer to have seen some sort of efficacy response to their drug. Everyone agreed on one bedrock requirement, however. To be selected, an API treatment must come with rigorous data showing that it has reached and engaged its intended molecular target, i.e., is biologically active in the brain. This can be done with biomarker readouts, but however it is accomplished, attendees insisted on solid target coverage data as an efficacy minimum if they are to take on the risk of pre-symptomatic research. This reflects, in part, lessons learned from the failure in Phase 3 trial of Flurizan. This drug was widely seen as a test of the amyloid hypothesis, but apparently went into Phase 3 without proof that enough of it reached and engaged its target, γ-secretase, in the human brain (see ARF related news story; ARF related news brief).

Beyond merely showing that the treatment engages its immediate molecular target, biomarker studies should show that it moves some of the most validated AD biomarkers in the expected direction, some scientists urged in Phoenix. One bold suggestion came up repeatedly: to inform the drug selection process, API scientists could request several candidate treatments and compare them side-by-side in short target engagement studies. These could use the biomarkers that most closely reflect the candidates’ underlying medical hypotheses. Even if drug companies balked at direct comparison of their “assets” and ran such brief studies individually on their compounds, they could still generate the necessary data on bioavailability, exposure, and indeed dose, for a larger, longer API trial. Moreover, genetic high-risk populations may have more pathology than people with sporadic AD; hence, doses needed to move biomarkers must be set directly in them.

Dose: Still a Black Box
Industry scientists suggested that a pre-symptomatic drug trial should test two doses versus placebo—provided, that is, that the sample sizes receiving a particular dose are large enough to evaluate the drug with adequate statistical power. How to set those doses in this pre-symptomatic setting is still quite an open question. The API scientists had drafted a study protocol for discussion purposes. Reviewing it, the invited group made clear they would like to see much more information about how to set the dose. Finding a safe and effective dose is especially important if the trials are to take as long as currently proposed, i.e., five years. Yet discussion about dose, indeed about many protocol details, can’t get overly specific until a drug is at hand and its mechanism of action can be taken into consideration, scientists cautioned. Hence, this discussion largely awaits another day.—Gabrielle Strobel.

This is Part 4 of a five-part series. See also Part 1, Part 2, Part 3, Part 5. See also a PDF of the entire series.

 
Comments on Related News
  Related News: Paper Alert—Phase 3 Tarenflurbil Data Published

Comment by:  Tohru Hasegawa
Submitted 22 December 2009  |  Permalink Posted 22 December 2009

Tarenflurbil, a γ-secretase modulator, failed in Phase 3 trial. Recent clinical failures of amyloid treatment including tarenflurbil have brought confusion to the Alzheimer’s field, which should consider the pathogenic differences of amyloid between Alzheimer’s model mice and humans. Anti-amyloid treatment in model mice succeeded in recovering the cognitive abilities of mice, but not humans.

Why? In their commentary, Montine and Larson explain the possibility that “Commonly used experimental models of Alzheimer disease may inadequately reflect the complexity of cognitive impairment and dementia in older patients and thereby provide falsely promising leads.”

Our research team has found that homocysteic acid (HA), which is metabolized from homocysteine or methionine, is a pathogen for Alzheimer disease. This pathogen basically works under amyloid toxicity. We confirmed this pathogenic action of HA with a newly developed HA vaccine for 3xTg-AD mice (1). First, the mice showed higher HA levels prior to amyloid-induced pathological changes. Second, the HA vaccine recovered...  Read more


  Related News: Paper Alert—Phase 3 Tarenflurbil Data Published

Comment by:  M. Paul Murphy
Submitted 30 December 2009  |  Permalink Posted 30 December 2009
  I recommend the Primary Papers

What has always been remarkable about preclinical work in mice is just how extraordinarily plastic amyloid deposits are in the mouse brain. I can recall numerous discussions with colleagues leading to the inevitable point that an inordinately high proportion of potential therapeutics significantly reduce Aβ in transgenic mice. This is a problem that echoes one in the cancer field (it has often been said that cancer was cured in mice a decade ago, but success at translating these findings into human patients has been poor). Not only does this situation cast doubt on our models of the disease itself, but makes one wonder if mice in general are a poor system in which to study Alzheimer disease.

View all comments by M. Paul Murphy

  Related News: Paper Alert—Phase 3 Tarenflurbil Data Published

Comment by:  Fred Van Leuven (Disclosure)
Submitted 14 January 2010  |  Permalink Posted 14 January 2010

It's amazing to have to read the "blame it on the mouse models" excuse.

Those working with mice know well: mice are not patients and definitely not AD patients. They "model" one or the other aspect of AD, in most cases (over)production of Aβ peptides and other APP metabolites, a fact often set aside in the pharma sector for temporary ease of mind.

So is the fact that putting in not one but three or five mutations accelerates the process, but does not necessarily improve the preclinical relevance of the model. Adding the odd mutant PS1 is defensible for mechanistic revelations of its actions on "85+ substrates," but as an amyloid , this is hardly relevant for the aged Phase 3 trial participant.

Models are what they are: living "test tubes" of higher-order complexity than a solution of recombinant enzyme, but never the "real thing." The only efficacy test tube of any compound or treatment is the clinic. It's too bad if they fail there…telling the model-makers that square one is still open for trying harder!

View all comments by Fred Van Leuven


  Related News: Phoenix: Trials in Colombia and the U.S. for Those at Highest Risk?

Comment by:  Kenneth Kosik, ARF Advisor
Submitted 1 March 2010  |  Permalink Posted 1 March 2010

The API project is important and valid, but I'd like to point out one oversight in this story. While the two study populations targeted at present are primarily selected on the basis of genetic risk, the non-genetic risk factors for AD, such as cardiovascular conditions and lifestyle risks, are significant. How intervening in these non-genetic risks will measure up against a drug treatment is unknown. In other words, treating an ApoE4/4 individual who also exercises and eats a Mediterranean diet may have a very different outcome compared to one who does not. Perhaps another benefit of the families in Antioquia is the relative uniformity of their lifestyle risks. Their diets and exercise levels are quite similar throughout the population.

View all comments by Kenneth Kosik

  Related News: Phoenix: Making Trials Work for Patient, Sponsor, Regulator

Comment by:  Lon Schneider, ARF Advisor (Disclosure)
Submitted 3 March 2010  |  Permalink Posted 3 March 2010

Suppose you have a registry or cohort of volunteers on whom you are gathering longitudinal data and can hence characterize their recent past history, and suppose you do so with ratings that are used in prevention trials. Then you have a cohort that you can rapidly recruit from because you know them and they know you. They are following you on Twitter and Facebook. That’s what I mean by recruitment in a nanosecond. Then, because you know their pre-randomization “trajectories” or characteristics, you could better estimate how long a trial might be (taking into consideration how you expect the drug to work), then randomize them into an appropriate strata, and you can customize each individual’s outcome.

View all comments by Lon Schneider
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
HAI—Sharper Curves: Revamping a Biomarker Staging Model
HAI—Aβ: First in Alzheimer’s Cascade, or Just Another Player?
Cut to the Chase: Therapies Go Directly to Central Nervous System
Alzforum’s Top 12 of 2012
C9ORF72 Function: Is the ALS Protein a Membrane Traffic Cop?
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad